These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39006034)
1. The 'Erlenmeter': a low-cost, open-source turbidimeter for no-sampling phenotyping of microorganism growth. Serôdio J; Bastos A; Frankenbach S; Frommlet JC; Esteves AC; Queiroga H PeerJ; 2024; 12():e17659. PubMed ID: 39006034 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of a new turbidimeter design incorporating a microprocessor-controlled variable pathlength cuvette. Ortmanis A; Patterson WI; Neufeld RJ Enzyme Microb Technol; 1991 Jun; 13(6):450-5. PubMed ID: 1367331 [TBL] [Abstract][Full Text] [Related]
3. Application of an on-line turbidimeter for the automation of fed-batch cultures. Yamane T Biotechnol Prog; 1993; 9(1):81-5. PubMed ID: 7763414 [TBL] [Abstract][Full Text] [Related]
7. Bottom-illuminated orbital shaker for microalgae cultivation. Nedbal J; Gao L; Suhling K HardwareX; 2020 Oct; 8():e00143. PubMed ID: 33442569 [TBL] [Abstract][Full Text] [Related]
8. Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures. Lin HL; Lin CC; Lin YJ; Lin HC; Shih CM; Chen CR; Huang RN; Kuo TC Appl Environ Microbiol; 2010 Mar; 76(5):1683-5. PubMed ID: 20081003 [TBL] [Abstract][Full Text] [Related]
9. An inexpensive, high-throughput μPAD assay of microbial growth rate and motility on solid surfaces using Saccharomyces cerevisiae and Escherichia coli as model organisms. Levy AF; Labrador A; Knecht L; Van Dyken JD PLoS One; 2020; 15(10):e0225020. PubMed ID: 33031388 [TBL] [Abstract][Full Text] [Related]
10. Cost-Effective Live Cell Density Determination of Liquid Cultured Microorganisms. Kutschera A; Lamb JJ Curr Microbiol; 2018 Feb; 75(2):231-236. PubMed ID: 29022067 [TBL] [Abstract][Full Text] [Related]
11. Generic estimator of biomass concentration for Escherichia coli and Saccharomyces cerevisiae fed-batch cultures based on cumulative oxygen consumption rate. Urniezius R; Survyla A; Paulauskas D; Bumelis VA; Galvanauskas V Microb Cell Fact; 2019 Nov; 18(1):190. PubMed ID: 31690339 [TBL] [Abstract][Full Text] [Related]
12. MiniRead: A simple and inexpensive do-it-yourself device for multiple analyses of micro-organism growth kinetics. Falque M; Bourgais A; Dumas F; de Carvalho M; Diblasi C Yeast; 2024 May; 41(5):307-314. PubMed ID: 38380872 [TBL] [Abstract][Full Text] [Related]
13. PHENOS: a high-throughput and flexible tool for microorganism growth phenotyping on solid media. Barton DBH; Georghiou D; Dave N; Alghamdi M; Walsh TA; Louis EJ; Foster SS BMC Microbiol; 2018 Jan; 18(1):9. PubMed ID: 29368646 [TBL] [Abstract][Full Text] [Related]
14. Fluorescent proteins as in-vivo and in-situ reporters to study the development of a Saccharomyces cerevisiae yeast biofilm and its invasion by the bacteria Escherichia coli. Beaufort S; Da Silva T; Lafforgue C; Alfenore S FEMS Microbiol Ecol; 2012 May; 80(2):342-51. PubMed ID: 22268656 [TBL] [Abstract][Full Text] [Related]
15. Effects of outdoor cultures on the growth and lipid production of Phaeodactylum tricornutum using closed photobioreactors. Santos-Ballardo DU; Rendón-Unceta Mdel C; Rossi S; Vázquez-Gómez R; Hernández-Verdugo S; Valdez-Ortiz A World J Microbiol Biotechnol; 2016 Aug; 32(8):128. PubMed ID: 27339309 [TBL] [Abstract][Full Text] [Related]
16. iTAP: integrated transcriptomics and phenotype database for stress response of Escherichia coli and Saccharomyces cerevisiae. Sundararaman N; Ash C; Guo W; Button R; Singh J; Feng X BMC Res Notes; 2015 Dec; 8():771. PubMed ID: 26653323 [TBL] [Abstract][Full Text] [Related]