These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39007292)
1. Optimizing UAV spray parameters to improve precise control of tobacco pests at different growth stages. Shi X; Du Y; Liu X; Liu C; Hou Q; Chen L; Yong R; Ma J; Yang D; Yuan H; Guo J; Liu P; Yan X Pest Manag Sci; 2024 Nov; 80(11):5809-5819. PubMed ID: 39007292 [TBL] [Abstract][Full Text] [Related]
2. Droplet distribution in cotton canopy using single-rotor and four-rotor unmanned aerial vehicles. Meng Y; Ma Y; Wang Z; Hu H PeerJ; 2022; 10():e13572. PubMed ID: 35722263 [TBL] [Abstract][Full Text] [Related]
3. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity. Wongsuk S; Qi P; Wang C; Zeng A; Sun F; Yu F; Zhao X; Xiongkui H Pest Manag Sci; 2024 Apr; 80(4):2072-2084. PubMed ID: 38129096 [TBL] [Abstract][Full Text] [Related]
4. Comparison of UAV and fixed-wing aerial application for alfalfa insect pest control: evaluating efficacy, residues, and spray quality. Li X; Giles DK; Andaloro JT; Long R; Lang EB; Watson LJ; Qandah I Pest Manag Sci; 2021 Nov; 77(11):4980-4992. PubMed ID: 34216079 [TBL] [Abstract][Full Text] [Related]
5. Study on droplet deposition characteristics and application of small and medium crown garden plants sprayed by UAV sprayer. Gao J; Bo P; Lan Y; Sun L; Liu H; Li X; Wang G; Wang H Front Plant Sci; 2024; 15():1343793. PubMed ID: 38828225 [TBL] [Abstract][Full Text] [Related]
6. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Wang G; Lan Y; Qi H; Chen P; Hewitt A; Han Y Pest Manag Sci; 2019 Jun; 75(6):1546-1555. PubMed ID: 30620130 [TBL] [Abstract][Full Text] [Related]
7. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards. Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733 [TBL] [Abstract][Full Text] [Related]
8. Research on a UAV spray system combined with grid atomized droplets. Xue X; Tian Y; Yang Z; Li Z; Lyu S; Song S; Sun D Front Plant Sci; 2023; 14():1286332. PubMed ID: 38235193 [TBL] [Abstract][Full Text] [Related]
9. Determination of the effective swath of a plant protection UAV adapted to mist nozzles in mountain Nangguo pear orchards. Liu Y; Yao W; Guo S; Yan H; Yu Z; Meng S; Chen D; Chen C Front Plant Sci; 2024; 15():1336580. PubMed ID: 38974984 [TBL] [Abstract][Full Text] [Related]
10. Field evaluation of a six-rotor unmanned agricultural aerial sprayer: effects of application parameters on spray deposition and control efficacy against rice planthopper. Huang Z; Wang C; Wongsuk S; Qi P; Liu L; Qiao B; Zhong L; He X Pest Manag Sci; 2023 Nov; 79(11):4664-4678. PubMed ID: 37448099 [TBL] [Abstract][Full Text] [Related]
11. Control Efficacy of UAV-Based Ultra-Low-Volume Application of Pesticide in Chestnut Orchards. Arakawa T; Kamio S Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514212 [TBL] [Abstract][Full Text] [Related]
12. Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. Lan X; Wang J; Chen P; Liang Q; Zhang L; Ma C Ecotoxicol Environ Saf; 2024 Sep; 282():116675. PubMed ID: 38971099 [TBL] [Abstract][Full Text] [Related]
13. Tank-mix adjuvants improved spray performance and biological efficacy in rice insecticide application with unmanned aerial vehicle sprayer. Wang L; Xia S; Zhang H; Li Y; Huang Z; Qiao B; Zhong L; Cao M; He X; Wang C; Liu Y Pest Manag Sci; 2024 Sep; 80(9):4371-4385. PubMed ID: 38662472 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Wang J; Ma C; Chen P; Yao W; Yan Y; Zeng T; Chen S; Lan Y Front Plant Sci; 2023; 14():1093912. PubMed ID: 36925752 [TBL] [Abstract][Full Text] [Related]
15. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
16. Optimization of Operational Parameters of Plant Protection UAV. Xing W; Cui Y; Wang X; Shen J Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204829 [TBL] [Abstract][Full Text] [Related]
17. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Wang B; Zhang Y; Wang C; Teng G Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524 [TBL] [Abstract][Full Text] [Related]
18. Challenges and opportunities of unmanned aerial vehicles as a new tool for crop pest control. Zhang R; Hewitt AJ; Chen L; Li L; Tang Q Pest Manag Sci; 2023 Nov; 79(11):4123-4131. PubMed ID: 37494136 [TBL] [Abstract][Full Text] [Related]
19. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Richardson B; Rolando CA; Somchit C; Dunker C; Strand TM; Kimberley MO Pest Manag Sci; 2020 Apr; 76(4):1282-1290. PubMed ID: 31595645 [TBL] [Abstract][Full Text] [Related]
20. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Biglia A; Grella M; Bloise N; Comba L; Mozzanini E; Sopegno A; Pittarello M; Dicembrini E; Alcatrão LE; Guglieri G; Balsari P; Aimonino DR; Gay P Sci Total Environ; 2022 Nov; 845():157292. PubMed ID: 35820523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]