These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39007336)
1. Impact of coating particles on liquid marble lifetime: reactor engineering approach to evaporation. Saczek J; Murphy K; Zivkovic V; Putranto A; Pramana SS Soft Matter; 2024 Jul; 20(29):5822-5835. PubMed ID: 39007336 [TBL] [Abstract][Full Text] [Related]
2. Elasticity and failure of liquid marbles: influence of particle coating and marble volume. Rendos A; Alsharif N; Kim BL; Brown KA Soft Matter; 2017 Dec; 13(47):8903-8909. PubMed ID: 28951907 [TBL] [Abstract][Full Text] [Related]
3. Particle Monolayer-Stabilized Light-Sensitive Liquid Marbles from Polypyrrole-Coated Microparticles. Asaumi Y; Rey M; Vogel N; Nakamura Y; Fujii S Langmuir; 2020 Mar; 36(10):2695-2706. PubMed ID: 32078776 [TBL] [Abstract][Full Text] [Related]
4. Evaporation rate of graphite liquid marbles: comparison with water droplets. Dandan M; Erbil HY Langmuir; 2009 Jul; 25(14):8362-7. PubMed ID: 19499944 [TBL] [Abstract][Full Text] [Related]
5. How particle-particle and liquid-particle interactions govern the fate of evaporating liquid marbles. Gallo A; Tavares F; Das R; Mishra H Soft Matter; 2021 Sep; 17(33):7628-7644. PubMed ID: 34318861 [TBL] [Abstract][Full Text] [Related]
12. Robust cellulose-based hydrogel marbles with excellent stability for gas sensing. Li N; Wanyan H; Lu S; Xiao H; Zhang M; Liu K; Li X; Du B; Huang L; Chen L; Ni Y; Wu H Carbohydr Polym; 2023 Apr; 306():120617. PubMed ID: 36746574 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation. Rykaczewski K; Chinn J; Walker ML; Scott JH; Chinn A; Jones W ACS Nano; 2011 Dec; 5(12):9746-54. PubMed ID: 22035295 [TBL] [Abstract][Full Text] [Related]
14. Modeling Evaporation and Particle Assembly in Colloidal Droplets. Zhao M; Yong X Langmuir; 2017 Jun; 33(23):5734-5744. PubMed ID: 28548503 [TBL] [Abstract][Full Text] [Related]
15. Effect of Stabilizing Particle Size on the Structure and Properties of Liquid Marbles. Asaumi Y; Rey M; Oyama K; Vogel N; Hirai T; Nakamura Y; Fujii S Langmuir; 2020 Nov; 36(44):13274-13284. PubMed ID: 33115238 [TBL] [Abstract][Full Text] [Related]
16. Larger Stabilizing Particles Make Stronger Liquid Marble. Liu Z; Zhang Y; Chen C; Yang T; Wang J; Guo L; Liu P; Kong T Small; 2019 Jan; 15(3):e1804549. PubMed ID: 30548921 [TBL] [Abstract][Full Text] [Related]
17. "Foam Marble" Stabilized with One Type of Polymer Particle. Aono K; Ueno K; Hamasaki S; Sakurai Y; Yusa SI; Nakamura Y; Fujii S Langmuir; 2022 Jun; 38(24):7603-7610. PubMed ID: 35666830 [TBL] [Abstract][Full Text] [Related]
18. Effects of particle size on the electrocoalescence dynamics and arrested morphology of liquid marbles. Zhang Y; Yang C; Yuan S; Yao X; Chao Y; Cao Y; Song Q; Sauret A; Binks BP; Shum HC J Colloid Interface Sci; 2022 Feb; 608(Pt 1):1094-1104. PubMed ID: 34879587 [TBL] [Abstract][Full Text] [Related]
19. A capillary rise method for studying the effective surface tension of monolayer nanoparticle-covered liquid marbles. Li X; Wang R; Huang S; Wang Y; Shi H Soft Matter; 2018 Dec; 14(48):9877-9884. PubMed ID: 30507993 [TBL] [Abstract][Full Text] [Related]
20. Capillarity in Interfacial Liquids and Marbles: Mechanisms, Properties, and Applications. Liu Y; Wang Y; Xin JH Molecules; 2024 Jun; 29(13):. PubMed ID: 38998938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]