These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39007410)

  • 1. Beyond a Richardson-Gaudin Mean-Field: Slater-Condon Rules and Perturbation Theory.
    Johnson PA
    J Phys Chem A; 2024 Jul; 128(29):6033-6045. PubMed ID: 39007410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition density matrices of Richardson-Gaudin states.
    Johnson PA; Fortin H; Cloutier S; Fecteau CÉ
    J Chem Phys; 2021 Mar; 154(12):124125. PubMed ID: 33810647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced density matrices of Richardson-Gaudin states in the Gaudin algebra basis.
    Fecteau CÉ; Fortin H; Cloutier S; Johnson PA
    J Chem Phys; 2020 Oct; 153(16):164117. PubMed ID: 33138426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single Reference Treatment of Strongly Correlated H
    Johnson PA; DePrince AE
    J Chem Theory Comput; 2023 Nov; 19(22):8129-8146. PubMed ID: 37955440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-exact treatment of seniority-zero ground and excited states with a Richardson-Gaudin mean-field.
    Fecteau CÉ; Cloutier S; Moisset JD; Boulay J; Bultinck P; Faribault A; Johnson PA
    J Chem Phys; 2022 May; 156(19):194103. PubMed ID: 35597662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced density matrices/static correlation functions of Richardson-Gaudin states without rapidities.
    Faribault A; Dimo C; Moisset JD; Johnson PA
    J Chem Phys; 2022 Dec; 157(21):214104. PubMed ID: 36511561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Richardson-Gaudin mean-field for strong correlation in quantum chemistry.
    Johnson PA; Fecteau CÉ; Berthiaume F; Cloutier S; Carrier L; Gratton M; Bultinck P; De Baerdemacker S; Van Neck D; Limacher P; Ayers PW
    J Chem Phys; 2020 Sep; 153(10):104110. PubMed ID: 32933287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density matrices of seniority-zero geminal wavefunctions.
    Moisset JD; Fecteau CÉ; Johnson PA
    J Chem Phys; 2022 Jun; 156(21):214110. PubMed ID: 35676122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking the Variational Reduced Density Matrix Theory in the Doubly Occupied Configuration Interaction Space with Integrable Pairing Models.
    Rubio-García A; Alcoba DR; Capuzzi P; Dukelsky J
    J Chem Theory Comput; 2018 Aug; 14(8):4183-4192. PubMed ID: 29906104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized nonorthogonal matrix elements: Unifying Wick's theorem and the Slater-Condon rules.
    Burton HGA
    J Chem Phys; 2021 Apr; 154(14):144109. PubMed ID: 33858143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variational determination of ground and excited-state two-electron reduced density matrices in the doubly occupied configuration space: A dispersion operator approach.
    Alcoba DR; Oña OB; Lain L; Torre A; Capuzzi P; Massaccesi GE; Ríos E; Rubio-García A; Dukelsky J
    J Chem Phys; 2021 Jun; 154(22):224104. PubMed ID: 34241224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in vibrational configuration interaction theory - part 2: Fast screening of the correlation space.
    Mathea T; Petrenko T; Rauhut G
    J Comput Chem; 2022 Jan; 43(1):6-18. PubMed ID: 34651704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of electronic excitation energies within the doubly occupied configuration interaction space by means of the Hermitian operator method.
    Garros A; Alcoba DR; Capuzzi P; Lain L; Torre A; Oña OB; Dukelsky J
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Almost exact energies for the Gaussian-2 set with the semistochastic heat-bath configuration interaction method.
    Yao Y; Giner E; Li J; Toulouse J; Umrigar CJ
    J Chem Phys; 2020 Sep; 153(12):124117. PubMed ID: 33003731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy of N Cooper pairs by analytically solving the Richardson-Gaudin equations for conventional superconductors.
    Crouzeix M; Combescot M
    Phys Rev Lett; 2011 Dec; 107(26):267001. PubMed ID: 22243177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of minimal active space CASSCF-SO methods for calculation of atomic Slater-Condon and spin-orbit coupling parameters in d- and f-block ions.
    Walisinghe AJ; Chilton NF
    Dalton Trans; 2021 Oct; 50(40):14130-14138. PubMed ID: 34623369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements.
    Höfener S; Bischoff FA; Glöss A; Klopper W
    Phys Chem Chem Phys; 2008 Jun; 10(23):3390-9. PubMed ID: 18535722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noisy Spins and the Richardson-Gaudin Model.
    Rowlands DA; Lamacraft A
    Phys Rev Lett; 2018 Mar; 120(9):090401. PubMed ID: 29547309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
    Gagliardi L; Truhlar DG; Li Manni G; Carlson RK; Hoyer CE; Bao JL
    Acc Chem Res; 2017 Jan; 50(1):66-73. PubMed ID: 28001359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of perturbation theory approaches for computing non-condon electron transfer dynamics in condensed phases.
    Cook WR; Coalson RD; Evans DG
    J Phys Chem B; 2009 Aug; 113(33):11437-47. PubMed ID: 19630413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.