These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 39007530)
1. Programming of in Situ Tumor Vaccines via Supramolecular Nanodrug/Hydrogel Composite and Deformable Nanoadjuvant for Cancer Immunotherapy. Shao S; Cao Z; Xiao Z; Yu B; Hu L; Du XJ; Yang X Nano Lett; 2024 Jul; 24(29):9017-9026. PubMed ID: 39007530 [TBL] [Abstract][Full Text] [Related]
2. Hydrogel/nanoadjuvant-mediated combined cell vaccines for cancer immunotherapy. Yang A; Bai Y; Dong X; Ma T; Zhu D; Mei L; Lv F Acta Biomater; 2021 Oct; 133():257-267. PubMed ID: 34407475 [TBL] [Abstract][Full Text] [Related]
3. Le QV; Suh J; Choi JJ; Park GT; Lee JW; Shim G; Oh YK ACS Nano; 2019 Jul; 13(7):7442-7462. PubMed ID: 31180642 [TBL] [Abstract][Full Text] [Related]
4. Supramolecular Lipid Nanoparticles Based on Host-Guest Recognition: A New Generation Delivery System of mRNA Vaccines For Cancer Immunotherapy. Qi S; Zhang X; Yu X; Jin L; Yang K; Wang Y; Feng Y; Lei J; Mao Z; Yu G Adv Mater; 2024 Jun; 36(23):e2311574. PubMed ID: 38433564 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular assembly of a trivalent peptide hydrogel vaccine for cancer immunotherapy. Song H; Su Q; Nie Y; Zhang C; Huang P; Shi S; Liu Q; Wang W Acta Biomater; 2023 Mar; 158():535-546. PubMed ID: 36632876 [TBL] [Abstract][Full Text] [Related]
6. A supramolecular protein chaperone for vaccine delivery. Wang Z; Shang Y; Tan Z; Li X; Li G; Ren C; Wang F; Yang Z; Liu J Theranostics; 2020; 10(2):657-670. PubMed ID: 31903143 [No Abstract] [Full Text] [Related]
7. Polydopamine nanoparticles cross-linked hyaluronic acid photothermal hydrogel with cascading immunoinducible effects for in situ antitumor vaccination. Fang Z; Yan Z; Li Z; Yan C; Jia S; Qiu X; Wang Q; Hou H; Wu Y; Du F; Gong A; Zhang M Int J Biol Macromol; 2024 Jun; 269(Pt 2):132177. PubMed ID: 38729484 [TBL] [Abstract][Full Text] [Related]
8. Multi-functional nanocomplex codelivery of Trp2 and R837 to activate melanoma-specific immunity. Ji Z; Tan Z; Li M; Tao J; Guan E; Du J; Hu Y Int J Pharm; 2020 May; 582():119310. PubMed ID: 32276088 [TBL] [Abstract][Full Text] [Related]
9. In Situ Tumor Vaccine for Lymph Nodes Delivery and Cancer Therapy Based on Small Size Nanoadjuvant. Zhang H; Zhang Y; Hu H; Yang W; Xia X; Lei L; Lin R; Li J; Li Y; Gao H Small; 2023 Aug; 19(33):e2301041. PubMed ID: 37078903 [TBL] [Abstract][Full Text] [Related]
10. A versatile supramolecular nanoadjuvant that activates NF-κB for cancer immunotherapy. Xu Y; Wang Y; Yang Q; Liu Z; Xiao Z; Le Z; Yang Z; Yang C Theranostics; 2019; 9(11):3388-3397. PubMed ID: 31244959 [TBL] [Abstract][Full Text] [Related]
11. Multifunctional Nanoparticle-Loaded Injectable Alginate Hydrogels with Deep Tumor Penetration for Enhanced Chemo-Immunotherapy of Cancer. Yang X; Huang C; Wang H; Yang K; Huang M; Zhang W; Yu Q; Wang H; Zhang L; Zhao Y; Zhu D ACS Nano; 2024 Jul; 18(28):18604-18621. PubMed ID: 38952130 [TBL] [Abstract][Full Text] [Related]
12. Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. Zhuang X; Wu T; Zhao Y; Hu X; Bao Y; Guo Y; Song Q; Li G; Tan S; Zhang Z J Control Release; 2016 Apr; 228():26-37. PubMed ID: 26921522 [TBL] [Abstract][Full Text] [Related]
13. Dual-Targeted Self-Adjuvant Heterocyclic Lipidoid@Polyester Hybrid Nanovaccines for Boosting Cancer Immunotherapy. Liu Z; Liu B; Feng Y; Zhao L; Wang Q; He H; Yin T; Zhang Y; Yang L; Gou J; Tang X ACS Nano; 2024 Jun; 18(24):15557-15575. PubMed ID: 38837909 [TBL] [Abstract][Full Text] [Related]
14. A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists. Baljon JJ; Kwiatkowski AJ; Pagendarm HM; Stone PT; Kumar A; Bharti V; Schulman JA; Becker KW; Roth EW; Christov PP; Joyce S; Wilson JT ACS Nano; 2024 Mar; 18(9):6845-6862. PubMed ID: 38386282 [TBL] [Abstract][Full Text] [Related]
15. Supramolecular Assembled Programmable Nanomedicine As In Situ Cancer Vaccine for Cancer Immunotherapy. Zhang Y; Ma S; Liu X; Xu Y; Zhao J; Si X; Li H; Huang Z; Wang Z; Tang Z; Song W; Chen X Adv Mater; 2021 Feb; 33(7):e2007293. PubMed ID: 33448050 [TBL] [Abstract][Full Text] [Related]
16. Polyethylenimine Hybrid Thin-Shell Hollow Mesoporous Silica Nanoparticles as Vaccine Self-Adjuvants for Cancer Immunotherapy. Liu Q; Zhou Y; Li M; Zhao L; Ren J; Li D; Tan Z; Wang K; Li H; Hussain M; Zhang L; Shen G; Zhu J; Tao J ACS Appl Mater Interfaces; 2019 Dec; 11(51):47798-47809. PubMed ID: 31773941 [TBL] [Abstract][Full Text] [Related]
17. In situ modulation of dendritic cells by injectable thermosensitive hydrogels for cancer vaccines in mice. Liu Y; Xiao L; Joo KI; Hu B; Fang J; Wang P Biomacromolecules; 2014 Oct; 15(10):3836-45. PubMed ID: 25207465 [TBL] [Abstract][Full Text] [Related]
18. Jin L; Yang D; Song Y; Li D; Xu W; Zhu Y; Xu CF; Lu Y; Yang X ACS Nano; 2022 Sep; 16(9):15226-15236. PubMed ID: 36018240 [TBL] [Abstract][Full Text] [Related]
19. Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models. Zhang R; Yuan F; Shu Y; Tian Y; Zhou B; Yi L; Zhang X; Ding Z; Xu H; Yang L Cancer Immunol Immunother; 2020 Jan; 69(1):135-145. PubMed ID: 31807878 [TBL] [Abstract][Full Text] [Related]
20. Uplifting Antitumor Immunotherapy with Lymph-Node-Targeted and Ratio-Controlled Codelivery of Tumor Cell Lysate and Adjuvant. Cui G; Sun Y; Qu L; Shen C; Sun Y; Meng F; Zheng Y; Zhong Z Adv Healthc Mater; 2024 Jul; 13(17):e2303690. PubMed ID: 38458152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]