These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 39008129)
21. Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis. Pais SV; Milho C; Almeida F; Mota LJ PLoS One; 2013; 8(2):e56292. PubMed ID: 23431368 [TBL] [Abstract][Full Text] [Related]
22. Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP. Brinkworth AJ; Malcolm DS; Pedrosa AT; Roguska K; Shahbazian S; Graham JE; Hayward RD; Carabeo RA Mol Microbiol; 2011 Oct; 82(1):131-44. PubMed ID: 21883523 [TBL] [Abstract][Full Text] [Related]
23. The Human Centrosomal Protein CCDC146 Binds Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225 [No Abstract] [Full Text] [Related]
24. The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole. Luís MP; Pereira IS; Bugalhão JN; Simões CN; Mota C; Romão MJ; Mota LJ Infect Immun; 2023 Apr; 91(4):e0040522. PubMed ID: 36877064 [TBL] [Abstract][Full Text] [Related]
25. Induction of type III secretion by cell-free Chlamydia trachomatis elementary bodies. Jamison WP; Hackstadt T Microb Pathog; 2008; 45(5-6):435-40. PubMed ID: 18984037 [TBL] [Abstract][Full Text] [Related]
26. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2. Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478 [TBL] [Abstract][Full Text] [Related]
27. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Hower S; Wolf K; Fields KA Mol Microbiol; 2009 Jun; 72(6):1423-37. PubMed ID: 19460098 [TBL] [Abstract][Full Text] [Related]
28. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins. Andersen SE; Bulman LM; Steiert B; Faris R; Weber MM Pathog Dis; 2021 Feb; 79(2):. PubMed ID: 33512479 [TBL] [Abstract][Full Text] [Related]
29. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Snavely EA; Kokes M; Dunn JD; Saka HA; Nguyen BD; Bastidas RJ; McCafferty DG; Valdivia RH Pathog Dis; 2014 Aug; 71(3):336-51. PubMed ID: 24838663 [TBL] [Abstract][Full Text] [Related]
30. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane. Olson MG; Ouellette SP; Rucks EA J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040 [TBL] [Abstract][Full Text] [Related]
31. The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens. Voigt A; Schöfl G; Saluz HP PLoS One; 2012; 7(4):e35097. PubMed ID: 22506068 [TBL] [Abstract][Full Text] [Related]
32. Independent inactivation of arginine decarboxylase genes by nonsense and missense mutations led to pseudogene formation in Chlamydia trachomatis serovar L2 and D strains. Giles TN; Fisher DJ; Graham DE BMC Evol Biol; 2009 Jul; 9():166. PubMed ID: 19607664 [TBL] [Abstract][Full Text] [Related]
33. Dynamic diversity of the tryptophan pathway in chlamydiae: reductive evolution and a novel operon for tryptophan recapture. Xie G; Bonner CA; Jensen RA Genome Biol; 2002 Aug; 3(9):research0051. PubMed ID: 12225590 [TBL] [Abstract][Full Text] [Related]
34. Domain analyses reveal that Chlamydia trachomatis CT694 protein belongs to the membrane-localized family of type III effector proteins. Bullock HD; Hower S; Fields KA J Biol Chem; 2012 Aug; 287(33):28078-86. PubMed ID: 22711538 [TBL] [Abstract][Full Text] [Related]
35. Multiple Chlamydiaceae species in trachoma: implications for disease pathogenesis and control. Dean D; Kandel RP; Adhikari HK; Hessel T PLoS Med; 2008 Jan; 5(1):e14. PubMed ID: 18177205 [TBL] [Abstract][Full Text] [Related]
36. Identification of phylogenetic position in the Chlamydiaceae family for Chlamydia strains released from monkeys and humans with chlamydial pathology. Karaulov A; Aleshkin V; Slobodenyuk V; Grechishnikova O; Afanasyev S; Lapin B; Dzhikidze E; Nesvizhsky Y; Evsegneeva I; Voropayeva E; Afanasyev M; Aleshkin A; Metelskaya V; Yegorova E; Bayrakova A Infect Dis Obstet Gynecol; 2010; 2010():130760. PubMed ID: 20671971 [TBL] [Abstract][Full Text] [Related]
37. The Chlamydia trachomatis type III secretion substrates CT142, CT143, and CT144 are secreted into the lumen of the inclusion. da Cunha M; Pais SV; Bugalhão JN; Mota LJ PLoS One; 2017; 12(6):e0178856. PubMed ID: 28622339 [TBL] [Abstract][Full Text] [Related]
38. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis. Nans A; Ford C; Hayward RD Microbes Infect; 2015; 17(11-12):727-31. PubMed ID: 26320027 [TBL] [Abstract][Full Text] [Related]
39. Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates. Fields KA; Fischer ER; Mead DJ; Hackstadt T J Bacteriol; 2005 Sep; 187(18):6466-78. PubMed ID: 16159780 [TBL] [Abstract][Full Text] [Related]
40. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling. Chen YS; Bastidas RJ; Saka HA; Carpenter VK; Richards KL; Plano GV; Valdivia RH PLoS Pathog; 2014 Feb; 10(2):e1003954. PubMed ID: 24586162 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]