These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 39008347)

  • 21. Dynamics of ribosome scanning and recycling revealed by translation complex profiling.
    Archer SK; Shirokikh NE; Beilharz TH; Preiss T
    Nature; 2016 Jul; 535(7613):570-4. PubMed ID: 27437580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of ribosome traffic by position-dependent choice of synonymous codons.
    Mitarai N; Pedersen S
    Phys Biol; 2013 Oct; 10(5):056011. PubMed ID: 24104350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translation initiation: a regulatory role for poly(A) tracts in front of the AUG codon in Saccharomyces cerevisiae.
    Xia X; MacKay V; Yao X; Wu J; Miura F; Ito T; Morris DR
    Genetics; 2011 Oct; 189(2):469-78. PubMed ID: 21840854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.
    Zhao F; Yu CH; Liu Y
    Nucleic Acids Res; 2017 Aug; 45(14):8484-8492. PubMed ID: 28582582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Codon Usage Optimization in the Prokaryotic Tree of Life: How Synonymous Codons Are Differentially Selected in Sequence Domains with Different Expression Levels and Degrees of Conservation.
    López JL; Lozano MJ; Fabre ML; Lagares A
    mBio; 2020 Jul; 11(4):. PubMed ID: 32694138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conservation of location of several specific inhibitory codon pairs in the Saccharomyces sensu stricto yeasts reveals translational selection.
    Ghoneim DH; Zhang X; Brule CE; Mathews DH; Grayhack EJ
    Nucleic Acids Res; 2019 Feb; 47(3):1164-1177. PubMed ID: 30576464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An evolutionarily conserved mechanism for controlling the efficiency of protein translation.
    Tuller T; Carmi A; Vestsigian K; Navon S; Dorfan Y; Zaborske J; Pan T; Dahan O; Furman I; Pilpel Y
    Cell; 2010 Apr; 141(2):344-54. PubMed ID: 20403328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adjacent Codons Act in Concert to Modulate Translation Efficiency in Yeast.
    Gamble CE; Brule CE; Dean KM; Fields S; Grayhack EJ
    Cell; 2016 Jul; 166(3):679-690. PubMed ID: 27374328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1.
    Letzring DP; Wolf AS; Brule CE; Grayhack EJ
    RNA; 2013 Sep; 19(9):1208-17. PubMed ID: 23825054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons.
    Yang Q; Yu CH; Zhao F; Dang Y; Wu C; Xie P; Sachs MS; Liu Y
    Nucleic Acids Res; 2019 Sep; 47(17):9243-9258. PubMed ID: 31410471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Throughput Quantitation of Yeast uORF Regulatory Impacts Using FACS-uORF.
    May GE; McManus CJ
    Methods Mol Biol; 2022; 2404():331-351. PubMed ID: 34694618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A rare codon-based translational program of cell proliferation.
    Guimaraes JC; Mittal N; Gnann A; Jedlinski D; Riba A; Buczak K; Schmidt A; Zavolan M
    Genome Biol; 2020 Feb; 21(1):44. PubMed ID: 32102681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Re-introducing non-optimal synonymous codons into codon-optimized constructs enhances soluble recovery of recombinant proteins from Escherichia coli.
    Konczal J; Bower J; Gray CH
    PLoS One; 2019; 14(4):e0215892. PubMed ID: 31013332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plastid mRNA translation.
    Sugiura M
    Methods Mol Biol; 2014; 1132():73-91. PubMed ID: 24599847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From reporters to endogenous genes: the impact of the first five codons on translation efficiency in
    Moreira MH; Barros GC; Requião RD; Rossetto S; Domitrovic T; Palhano FL
    RNA Biol; 2019 Dec; 16(12):1806-1816. PubMed ID: 31470761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genes for highly abundant proteins in Escherichia coli avoid 5' codons that promote ribosomal initiation.
    Lewin LE; Daniels KG; Hurst LD
    PLoS Comput Biol; 2023 Oct; 19(10):e1011581. PubMed ID: 37878567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of conserved slow codons that are important for protein expression and function.
    Perach M; Zafrir Z; Tuller T; Lewinson O
    RNA Biol; 2021 Dec; 18(12):2296-2307. PubMed ID: 33691590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of elongation stalls and impact on gene expression in yeast.
    Hou W; Harjono V; Harvey AT; Subramaniam AR; Zid BM
    RNA; 2023 Dec; 29(12):1928-1938. PubMed ID: 37783489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation.
    Wang J; Shin BS; Alvarado C; Kim JR; Bohlen J; Dever TE; Puglisi JD
    Cell; 2022 Nov; 185(24):4474-4487.e17. PubMed ID: 36334590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Translation elongation can control translation initiation on eukaryotic mRNAs.
    Chu D; Kazana E; Bellanger N; Singh T; Tuite MF; von der Haar T
    EMBO J; 2014 Jan; 33(1):21-34. PubMed ID: 24357599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.