These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39008387)

  • 1. Low-frequency Motor Cortex EEG Predicts Four Rates of Force Development.
    O'Keeffe R; Shirazi SY; Vecchio AD; Ibanez J; Mrachacz-Kersting N; Bighamian R; Rizzo JR; Farina D; Atashzar SF
    IEEE Trans Haptics; 2024 Jul; PP():. PubMed ID: 39008387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of preceding muscle activity on movement-related cortical potential during superimposed ballistic contraction.
    Miyamoto T; Kizuka T; Ono S
    Neurosci Lett; 2020 Sep; 735():135193. PubMed ID: 32565221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between motor activity-related cortical potential and voluntary muscle activation.
    Siemionow V; Yue GH; Ranganathan VK; Liu JZ; Sahgal V
    Exp Brain Res; 2000 Aug; 133(3):303-11. PubMed ID: 10958520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neurophysiology of central and peripheral fatigue during sub-maximal lower limb isometric contractions.
    Berchicci M; Menotti F; Macaluso A; Di Russo F
    Front Hum Neurosci; 2013; 7():135. PubMed ID: 23596408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationships between movement-related cortical potentials and motor unit activity during muscle contraction.
    Shibata M; Oda S; Moritani T
    J Electromyogr Kinesiol; 1997 Jun; 7(2):79-85. PubMed ID: 20719693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging-induced alterations in EEG spectral power associated with graded force motor tasks.
    Bayram MB; Suviseshamuthu ES; Plow EB; Forrest GF; Yue GH
    Exp Brain Res; 2023 Mar; 241(3):905-915. PubMed ID: 36808464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-dependent changes in movement-related cortical potentials.
    Oda S; Shibata M; Moritani T
    J Electromyogr Kinesiol; 1996 Dec; 6(4):247-52. PubMed ID: 20719681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mental fatigue induced by prolonged motor imagery increases perception of effort and the activity of motor areas.
    Jacquet T; Lepers R; Poulin-Charronnat B; Bard P; Pfister P; Pageaux B
    Neuropsychologia; 2021 Jan; 150():107701. PubMed ID: 33276035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms.
    Jochumsen M; Rovsing C; Rovsing H; Niazi IK; Dremstrup K; Kamavuako EN
    Comput Intell Neurosci; 2017; 2017():7470864. PubMed ID: 28951736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle fatigue-induced enhancement of corticomuscular coherence following sustained submaximal isometric contraction of the tibialis anterior muscle.
    Ushiyama J; Katsu M; Masakado Y; Kimura A; Liu M; Ushiba J
    J Appl Physiol (1985); 2011 May; 110(5):1233-40. PubMed ID: 21393470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Movement Related Cortical Potentials from EEG Using Constrained ICA for Brain-Computer Interface Applications.
    Karimi F; Kofman J; Mrachacz-Kersting N; Farina D; Jiang N
    Front Neurosci; 2017; 11():356. PubMed ID: 28713232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG coherence changes between right and left motor cortical areas during voluntary muscular contraction.
    Abdul-latif AA; Cosic I; Kumar DK; Polus B; Pah N; Djuwari D
    Australas Phys Eng Sci Med; 2004 Mar; 27(1):11-5. PubMed ID: 15156702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does sensorimotor cortex activity change with quadriceps femoris torque output? A human electroencephalography study.
    Fry A; Vogt T; Folland JP
    Neuroscience; 2014 Sep; 275():540-8. PubMed ID: 24993474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding of Self-paced Lower-Limb Movement Intention: A Case Study on the Influence Factors.
    Liu D; Chen W; Chavarriaga R; Pei Z; Millán JDR
    Front Hum Neurosci; 2017; 11():560. PubMed ID: 29218004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute and prolonged competing effects of activation history on human motor unit firing rates during contractile impairment and recovery.
    Zero AM; Fanous J; Rice CL
    J Physiol; 2023 Dec; 601(24):5689-5703. PubMed ID: 37962903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the modulation of brain activity associated with handgrip force and fatigue.
    Cao L; Hao D; Rong Y; Zhou Y; Li M; Tian Y
    Technol Health Care; 2015; 23 Suppl 2():S427-33. PubMed ID: 26410509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique Neural Mechanisms Underlying Speed Control of Low-Force Ballistic Contractions.
    Kim JJ; Delmas S; Choi YJ; Hubbard JC; Weintraub M; Arabatzi F; Yacoubi B; Christou EA
    J Hum Kinet; 2024 Jan; 90():29-44. PubMed ID: 38380304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greater movement-related cortical potential during human eccentric versus concentric muscle contractions.
    Fang Y; Siemionow V; Sahgal V; Xiong F; Yue GH
    J Neurophysiol; 2001 Oct; 86(4):1764-72. PubMed ID: 11600637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue.
    Spring JN; Place N; Borrani F; Kayser B; Barral J
    Front Hum Neurosci; 2016; 10():257. PubMed ID: 27313522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance control in one consecutive motor task sequence - Αpproaching central neuronal motor behaviour preceding isometric contraction onsets and relaxation offsets at lower distinct torques.
    Vogt T; Kato K; Flüthmann N; Bloch O; Nakata H; Kanosue K
    J Musculoskelet Neuronal Interact; 2018 Mar; 18(1):1-8. PubMed ID: 29504573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.