These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39008464)

  • 1. Puzzle Hi-C: An accurate scaffolding software.
    Lin G; Huang Z; Yue T; Chai J; Li Y; Yang H; Qin W; Yang G; Murphy RW; Zhang YP; Zhang Z; Zhou W; Luo J
    PLoS One; 2024; 19(7):e0298564. PubMed ID: 39008464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EndHiC: assemble large contigs into chromosome-level scaffolds using the Hi-C links from contig ends.
    Wang S; Wang H; Jiang F; Wang A; Liu H; Zhao H; Yang B; Xu D; Zhang Y; Fan W
    BMC Bioinformatics; 2022 Dec; 23(1):528. PubMed ID: 36482318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HiC-Hiker: a probabilistic model to determine contig orientation in chromosome-length scaffolds with Hi-C.
    Nakabayashi R; Morishita S
    Bioinformatics; 2020 Jul; 36(13):3966-3974. PubMed ID: 32369554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.
    Coombe L; Zhang J; Vandervalk BP; Chu J; Jackman SD; Birol I; Warren RL
    BMC Bioinformatics; 2018 Jun; 19(1):234. PubMed ID: 29925315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Hi-C-Based Scaffolding Tools on Plant Genomes.
    Hou Y; Wang L; Pan W
    Genes (Basel); 2023 Nov; 14(12):. PubMed ID: 38136968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CSA: A high-throughput chromosome-scale assembly pipeline for vertebrate genomes.
    Kuhl H; Li L; Wuertz S; Stöck M; Liang XF; Klopp C
    Gigascience; 2020 May; 9(5):. PubMed ID: 32449778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating Hi-C links with assembly graphs for chromosome-scale assembly.
    Ghurye J; Rhie A; Walenz BP; Schmitt A; Selvaraj S; Pop M; Phillippy AM; Koren S
    PLoS Comput Biol; 2019 Aug; 15(8):e1007273. PubMed ID: 31433799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding?
    Kadota M; Nishimura O; Miura H; Tanaka K; Hiratani I; Kuraku S
    Gigascience; 2020 Jan; 9(1):. PubMed ID: 31919520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient iterative Hi-C scaffolder based on N-best neighbors.
    Guan D; McCarthy SA; Ning Z; Wang G; Wang Y; Durbin R
    BMC Bioinformatics; 2021 Nov; 22(1):569. PubMed ID: 34837944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. instaGRAAL: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder.
    Baudry L; Guiglielmoni N; Marie-Nelly H; Cormier A; Marbouty M; Avia K; Mie YL; Godfroy O; Sterck L; Cock JM; Zimmer C; Coelho SM; Koszul R
    Genome Biol; 2020 Jun; 21(1):148. PubMed ID: 32552806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OMGS: Optical Map-Based Genome Scaffolding.
    Pan W; Jiang T; Lonardi S
    J Comput Biol; 2020 Apr; 27(4):519-533. PubMed ID: 31794680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffolding of long read assemblies using long range contact information.
    Ghurye J; Pop M; Koren S; Bickhart D; Chin CS
    BMC Genomics; 2017 Jul; 18(1):527. PubMed ID: 28701198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.
    Peichel CL; Sullivan ST; Liachko I; White MA
    J Hered; 2017 Sep; 108(6):693-700. PubMed ID: 28821183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SLR: a scaffolding algorithm based on long reads and contig classification.
    Luo J; Lyu M; Chen R; Zhang X; Luo H; Yan C
    BMC Bioinformatics; 2019 Oct; 20(1):539. PubMed ID: 31666010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SCARPA: scaffolding reads with practical algorithms.
    Donmez N; Brudno M
    Bioinformatics; 2013 Feb; 29(4):428-34. PubMed ID: 23274213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical considerations in Hi-C scaffolding and evaluation of chromosome-scale genome assemblies.
    Yamaguchi K; Kadota M; Nishimura O; Ohishi Y; Naito Y; Kuraku S
    Mol Ecol; 2021 Dec; 30(23):5923-5934. PubMed ID: 34432923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions.
    Burton JN; Adey A; Patwardhan RP; Qiu R; Kitzman JO; Shendure J
    Nat Biotechnol; 2013 Dec; 31(12):1119-25. PubMed ID: 24185095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data.
    Zhang X; Zhang S; Zhao Q; Ming R; Tang H
    Nat Plants; 2019 Aug; 5(8):833-845. PubMed ID: 31383970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. qc3C: Reference-free quality control for Hi-C sequencing data.
    DeMaere MZ; Darling AE
    PLoS Comput Biol; 2021 Oct; 17(10):e1008839. PubMed ID: 34634030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Illumina assemblies with Hi-C and long reads: An example with the North African dromedary.
    Elbers JP; Rogers MF; Perelman PL; Proskuryakova AA; Serdyukova NA; Johnson WE; Horin P; Corander J; Murphy D; Burger PA
    Mol Ecol Resour; 2019 Jul; 19(4):1015-1026. PubMed ID: 30972949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.