These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39008464)

  • 21. HapSolo: an optimization approach for removing secondary haplotigs during diploid genome assembly and scaffolding.
    Solares EA; Tao Y; Long AD; Gaut BS
    BMC Bioinformatics; 2021 Jan; 22(1):9. PubMed ID: 33407090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scaffolding pre-assembled contigs using SSPACE.
    Boetzer M; Henkel CV; Jansen HJ; Butler D; Pirovano W
    Bioinformatics; 2011 Feb; 27(4):578-9. PubMed ID: 21149342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GreenHill: a de novo chromosome-level scaffolding and phasing tool using Hi-C.
    Ouchi S; Kajitani R; Itoh T
    Genome Biol; 2023 Jul; 24(1):162. PubMed ID: 37434204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Refinement by Direct Mapping Reveals Assembly Inconsistencies near Hi-C Junctions.
    Marcolungo L; Vincenzi L; Ballottari M; Cecchin M; Cosentino E; Mignani T; Limongi A; Ferraris I; Orlandi M; Rossato M; Delledonne M
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data.
    Oluwadare O; Highsmith M; Turner D; Lieberman Aiden E; Cheng J
    BMC Mol Cell Biol; 2020 Aug; 21(1):60. PubMed ID: 32758136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The DLO Hi-C Tool for Digestion-Ligation-Only Hi-C Chromosome Conformation Capture Data Analysis.
    Hong P; Jiang H; Xu W; Lin D; Xu Q; Cao G; Li G
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32164155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From Short Reads to Chromosome-Scale Genome Assemblies.
    Fletcher K; Michelmore R
    Methods Mol Biol; 2018; 1848():151-197. PubMed ID: 30182236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ILP-based maximum likelihood genome scaffolding.
    Lindsay J; Salooti H; Măndoiu I; Zelikovsky A
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25253180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward almost closed genomes with GapFiller.
    Boetzer M; Pirovano W
    Genome Biol; 2012 Jun; 13(6):R56. PubMed ID: 22731987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromosome-Level Genome Assemblies Expand Capabilities of Genomics for Conservation Biology.
    Totikov A; Tomarovsky A; Prokopov D; Yakupova A; Bulyonkova T; Derezanin L; Rasskazov D; Wolfsberger WW; Koepfli KP; Oleksyk TK; Kliver S
    Genes (Basel); 2021 Aug; 12(9):. PubMed ID: 34573318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ragout-a reference-assisted assembly tool for bacterial genomes.
    Kolmogorov M; Raney B; Paten B; Pham S
    Bioinformatics; 2014 Jun; 30(12):i302-9. PubMed ID: 24931998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modern technologies and algorithms for scaffolding assembled genomes.
    Ghurye J; Pop M
    PLoS Comput Biol; 2019 Jun; 15(6):e1006994. PubMed ID: 31166948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ALLMAPS: robust scaffold ordering based on multiple maps.
    Tang H; Zhang X; Miao C; Zhang J; Ming R; Schnable JC; Schnable PS; Lyons E; Lu J
    Genome Biol; 2015 Jan; 16(1):3. PubMed ID: 25583564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the Chromosome-Level Genome Assembly of the Siamese Fighting Fish (
    Prost S; Petersen M; Grethlein M; Hahn SJ; Kuschik-Maczollek N; Olesiuk ME; Reschke JO; Schmey TE; Zimmer C; Gupta DK; Schell T; Coimbra R; De Raad J; Lammers F; Winter S; Janke A
    G3 (Bethesda); 2020 Jul; 10(7):2179-2183. PubMed ID: 32385046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SLR-superscaffolder: a de novo scaffolding tool for synthetic long reads using a top-to-bottom scheme.
    Guo L; Xu M; Wang W; Gu S; Zhao X; Chen F; Wang O; Xu X; Seim I; Fan G; Deng L; Liu X
    BMC Bioinformatics; 2021 Mar; 22(1):158. PubMed ID: 33765921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CSAR: a contig scaffolding tool using algebraic rearrangements.
    Chen KT; Liu CL; Huang SH; Shen HT; Shieh YK; Chiu HT; Lu CL
    Bioinformatics; 2018 Jan; 34(1):109-111. PubMed ID: 28968788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contact genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures.
    Flot JF; Marie-Nelly H; Koszul R
    FEBS Lett; 2015 Oct; 589(20 Pt A):2966-74. PubMed ID: 25935414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromosomal-level assembly of yellow catfish genome using third-generation DNA sequencing and Hi-C analysis.
    Gong G; Dan C; Xiao S; Guo W; Huang P; Xiong Y; Wu J; He Y; Zhang J; Li X; Chen N; Gui JF; Mei J
    Gigascience; 2018 Nov; 7(11):. PubMed ID: 30256939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set.
    Damas J; O'Connor R; Farré M; Lenis VPE; Martell HJ; Mandawala A; Fowler K; Joseph S; Swain MT; Griffin DK; Larkin DM
    Genome Res; 2017 May; 27(5):875-884. PubMed ID: 27903645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.