These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39008749)

  • 1. Enhanced detection limit in an exceptional surface-based fiber resonator by manipulating Fano interference.
    Jiang S; Li J; Li Z; Li W; Huang X; Zhang H; Zhang G; Huang A; Xiao Z
    Opt Lett; 2024 Jul; 49(14):3954-3957. PubMed ID: 39008749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator.
    Xie Q; Dong GX; Wang BX; Huang WQ
    Nanoscale Res Lett; 2018 Sep; 13(1):294. PubMed ID: 30242559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator.
    Zhang K; Wang Y; Wu YH
    Opt Lett; 2017 Aug; 42(15):2956-2959. PubMed ID: 28957218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system.
    Li S; Wang Y; Jiao R; Wang L; Duan G; Yu L
    Opt Express; 2017 Feb; 25(4):3525-3533. PubMed ID: 28241566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-Control and Switching of Optical Fano Resonance by Continuum State Engineering.
    Ko JH; Park JH; Yoo YJ; Chang S; Kang J; Wu A; Yang F; Kim S; Jeon HG; Song YM
    Adv Sci (Weinh); 2023 Nov; 10(32):e2304310. PubMed ID: 37691086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally tunable ultracompact Fano resonator on a silicon photonic chip.
    Zhang W; Yao J
    Opt Lett; 2018 Nov; 43(21):5415-5418. PubMed ID: 30383021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exceptional points enhance sensing in an optical microcavity.
    Chen W; Kaya Özdemir Ş; Zhao G; Wiersig J; Yang L
    Nature; 2017 Aug; 548(7666):192-196. PubMed ID: 28796206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of refractive index sensing based on Fano resonance in fiber Bragg grating ring resonators.
    Campanella CE; De Leonardis F; Mastronardi L; Malara P; Gagliardi G; Passaro VM
    Opt Express; 2015 Jun; 23(11):14301-13. PubMed ID: 26072795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-sensitivity plasmonic sensor by narrowing Fano resonances in a tilted metallic nano-groove array.
    Jia S; Li Z; Chen J
    Opt Express; 2021 Jul; 29(14):21358-21368. PubMed ID: 34265925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral Characteristics and Displacement Sensing of U-Shaped Single-Mode-Multimode-Single-Mode Fiber Structure.
    Tian C; Chen X; Ren Y; Yang Y; Wang M; Bai X
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system.
    Li S; Zhang Y; Song X; Wang Y; Yu L
    Opt Express; 2016 Jul; 24(14):15351-61. PubMed ID: 27410811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T-shaped silicon waveguide coupled with a micro-ring resonator-based Fano resonance modulator.
    Xu Y; Lu L; Chen G; Liao J; Xu X; Ou J; Zhu L
    Appl Opt; 2022 Nov; 61(31):9217-9224. PubMed ID: 36607056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano resonances in cone-shaped inwall capillary based microsphere resonator.
    Zhang X; Yang Y; Shao H; Bai H; Pang F; Xiao H; Wang T
    Opt Express; 2017 Jan; 25(2):615-621. PubMed ID: 28157951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double ring nanostructure with an internal cavity and a multiple Fano resonances system for refractive index sensing.
    Shao Z; Yan S; Wen F; Wu X; Hua E
    Appl Opt; 2021 Aug; 60(22):6623-6631. PubMed ID: 34612905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Fano resonance with an ultra-high slope rate by silicon nitride CROW embedded in a Mach-Zehnder interferometer.
    Cheng W; Lin D; Liu P; Yun B; Lu M; Shi S; Hu G; Cui Y
    Opt Express; 2022 Dec; 30(26):46147-46156. PubMed ID: 36558576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Fano resonance by transition from fast light to slow light in a coupled-resonator-induced transparency structure.
    Zhang Y; Zhang X; Wang Y; Zhu R; Gai Y; Liu X; Yuan P
    Opt Express; 2013 Apr; 21(7):8570-86. PubMed ID: 23571947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications.
    Rohimah S; Tian H; Wang J; Chen J; Li J; Liu X; Cui J; Hao Y
    Appl Opt; 2022 Feb; 61(6):1275-1283. PubMed ID: 35201006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Fano-like interference to superscattering with a single metallic nanodisk.
    Wan W; Zheng W; Chen Y; Liu Z
    Nanoscale; 2014 Aug; 6(15):9093-102. PubMed ID: 24975582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y; Sun C; Li H; Gong Q; Chen J
    Nanoscale; 2017 Aug; 9(31):11085-11092. PubMed ID: 28741643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fano resonance-induced negative optical scattering force on plasmonic nanoparticles.
    Chen H; Liu S; Zi J; Lin Z
    ACS Nano; 2015 Feb; 9(2):1926-35. PubMed ID: 25635617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.