These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39008754)
1. Coupled photothermal vortices for capture, sorting, and transportation of particles. Kang W; Luan T; Zhou W; Yin Y; Liu L; Wang S; Li Z; Yang J; Ho HP; Shou Q; Xing X Opt Lett; 2024 Jul; 49(14):3974-3977. PubMed ID: 39008754 [TBL] [Abstract][Full Text] [Related]
2. Vortices-interaction-induced microstreaming for the pump-free separation of particles. Zhou R; Yang J; Zhang Y; Luo F; Chen Y; Li Y; Luan T; Shou Q; Jiang X; Hu X; Wu J; Liu C; Zhong H; Li Z; Ho HP; Xing X Opt Lett; 2021 Aug; 46(15):3629-3632. PubMed ID: 34329242 [TBL] [Abstract][Full Text] [Related]
3. An optofluidic conveyor for particle transportation based on a fiber array and photothermal convection. Zhan W; Wu R; Gao K; Zheng J; Song W Lab Chip; 2020 Oct; 20(21):4063-4070. PubMed ID: 33021302 [TBL] [Abstract][Full Text] [Related]
4. Fiber Optofluidic Technology Based on Optical Force and Photothermal Effects. Zhang C; Xu B; Gong C; Luo J; Zhang Q; Gong Y Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31357458 [TBL] [Abstract][Full Text] [Related]
5. A Versatile Optoelectronic Tweezer System for Micro-Objects Manipulation: Transportation, Patterning, Sorting, Rotating and Storage. Liang S; Cao Y; Dai Y; Wang F; Bai X; Song B; Zhang C; Gan C; Arai F; Feng L Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800834 [TBL] [Abstract][Full Text] [Related]
6. Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools. Zhu Y; You M; Shi Y; Huang H; Wei Z; He T; Xiong S; Wang Z; Cheng X Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512637 [TBL] [Abstract][Full Text] [Related]
8. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation. Zhao X; Zhao N; Shi Y; Xin H; Li B Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061 [TBL] [Abstract][Full Text] [Related]
9. A weak shear stress microfluidic device based on Viscoelastic Stagnant Region (VSR) for biosensitive particle capture. Lu Y; Tan W; Shi X; Liu M; Zhu G Talanta; 2021 Oct; 233():122550. PubMed ID: 34215053 [TBL] [Abstract][Full Text] [Related]
10. DIY 3D Microparticle Generation from Next Generation Optofluidic Fabrication. Paulsen KS; Deng Y; Chung AJ Adv Sci (Weinh); 2018 Jul; 5(7):1800252. PubMed ID: 30027056 [TBL] [Abstract][Full Text] [Related]
11. Simulations and experimental demonstration of three different regimes of optofluidic manipulation. Wang H; Tarriela J; Shiveshwarkar P; Pyayt A Appl Opt; 2021 Jan; 60(3):593-599. PubMed ID: 33690432 [TBL] [Abstract][Full Text] [Related]
13. Tunable optofluidic sorting and manipulation on micro-ring resonators from a statistics perspective. Xu W; Wang Y; Jiao W; Wang F; Xu X; Jiang M; Ho HP; Wang G Opt Lett; 2019 Jul; 44(13):3226-3229. PubMed ID: 31259927 [TBL] [Abstract][Full Text] [Related]
14. Microparticle separation using asymmetrical induced-charge electro-osmotic vortices on an arc-edge-based floating electrode. Chen X; Ren Y; Hou L; Feng X; Jiang T; Jiang H Analyst; 2019 Aug; 144(17):5150-5163. PubMed ID: 31342972 [TBL] [Abstract][Full Text] [Related]
15. Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber. Lei H; Xu C; Zhang Y; Li B Nanoscale; 2012 Nov; 4(21):6707-9. PubMed ID: 22996078 [TBL] [Abstract][Full Text] [Related]
16. Manipulation of emergent vortices in swarms of magnetic rollers. Kokot G; Snezhko A Nat Commun; 2018 Jun; 9(1):2344. PubMed ID: 29904114 [TBL] [Abstract][Full Text] [Related]
17. Single Particle Differentiation through 2D Optical Fiber Trapping and Back-Scattered Signal Statistical Analysis: An Exploratory Approach. Paiva JS; Ribeiro RSR; Cunha JPS; Rosa CC; Jorge PAS Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495502 [TBL] [Abstract][Full Text] [Related]
18. All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching. Yuan L; Huang J; Lan X; Wang H; Jiang L; Xiao H Opt Lett; 2014 Apr; 39(8):2358-61. PubMed ID: 24978992 [TBL] [Abstract][Full Text] [Related]
19. Continuous Submicron Particle Separation Via Vortex-Enhanced Ionic Concentration Polarization: A Numerical Investigation. Dezhkam R; Amiri HA; Collins DJ; Miansari M Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557503 [TBL] [Abstract][Full Text] [Related]
20. Optical Sorting at the Single-Particle Level with Single-Nanometer Precision Using Coordinated Intensity and Phase Gradient Forces. Nan F; Yan Z ACS Nano; 2020 Jun; 14(6):7602-7609. PubMed ID: 32428394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]