These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 39009031)

  • 1. Riboflavin overproduction on lignocellulose hydrolysate by the engineered yeast Candida famata.
    Dzanaeva LS; Wojdyła D; Fedorovych DV; Ruchala J; Dmytruk KV; Sibirny AA
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 39009031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cheese whey supports high riboflavin synthesis by the engineered strains of the flavinogenic yeast Candida famata.
    Ruchala J; Andreieva YA; Tsyrulnyk AO; Sobchuk SM; Najdecka A; Wen L; Kang Y; Dmytruk OV; Dmytruk KV; Fedorovych DV; Sibirny AA
    Microb Cell Fact; 2022 Aug; 21(1):161. PubMed ID: 35964025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of Riboflavin Excretase Enhances Riboflavin Production in the Yeast Candida famata.
    Tsyrulnyk AO; Fedorovych DV; Dmytruk KV; Sibirny AA
    Methods Mol Biol; 2021; 2280():31-42. PubMed ID: 33751427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata.
    Fedorovych DV; Dmytruk KV; Sibirny AA
    Methods Mol Biol; 2021; 2280():15-30. PubMed ID: 33751426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Control Strategy to Produce Riboflavin with Lignocellulose Hydrolysate in the Thermophile
    Wang J; Li Z; Wang W; Pang S; Yao Y; Yuan F; Wang H; Xu Z; Pan G; Liu Z; Chen Y; Fan K
    ACS Synth Biol; 2022 Jun; 11(6):2163-2174. PubMed ID: 35677969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the regulatory genes SEF1, VMA1 and SFU1 in riboflavin synthesis in the flavinogenic yeast Candida famata (Candida flareri).
    Andreieva Y; Petrovska Y; Lyzak O; Liu W; Kang Y; Dmytruk K; Sibirny A
    Yeast; 2020 Sep; 37(9-10):497-504. PubMed ID: 32529692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose.
    Wu J; Hu J; Zhao S; He M; Hu G; Ge X; Peng N
    Appl Biochem Biotechnol; 2018 May; 185(1):163-178. PubMed ID: 29098561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Saccharomyces cerevisiae for increased bioconversion of lignocellulose to ethanol.
    Jun H; Jiayi C
    Indian J Microbiol; 2012 Sep; 52(3):442-8. PubMed ID: 23997337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of the advanced flavin mononucleotide producers in the flavinogenic yeast Candida famata.
    Fedorovych DV; Tsyrulnyk AO; Ruchala J; Sobchuk SM; Dmytruk KV; Fayura LR; Sibirny AA
    Yeast; 2023 Aug; 40(8):360-366. PubMed ID: 36751139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol.
    Moreno AD; Carbone A; Pavone R; Olsson L; Geijer C
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1405-1416. PubMed ID: 30498977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid.
    Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM
    Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts.
    Ruchala J; Sibirny AA
    FEMS Microbiol Rev; 2021 Aug; 45(4):. PubMed ID: 33316044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis.
    Wang H; Li L; Zhang L; An J; Cheng H; Deng Z
    Microb Cell Fact; 2016 May; 15():82. PubMed ID: 27184671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain.
    Drzymała-Kapinos K; Mirończuk AM; Dobrowolski A
    Microb Cell Fact; 2022 Oct; 21(1):226. PubMed ID: 36307797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production.
    Dmytruk K; Lyzak O; Yatsyshyn V; Kluz M; Sibirny V; Puchalski C; Sibirny A
    J Biotechnol; 2014 Feb; 172():11-7. PubMed ID: 24361297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate.
    Johansson B; Christensson C; Hobley T; Hahn-Hägerdal B
    Appl Environ Microbiol; 2001 Sep; 67(9):4249-55. PubMed ID: 11526030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR; Ha SJ; Kong II; Jin YS
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.