These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 39009042)

  • 1. Integrated Framework to Model Microstructure Evolution and Decipher the Microstructure-Property Relationship in Polymeric Porous Materials.
    Feng L; Huang S; Heo TW; Biener J
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38442-38457. PubMed ID: 39009042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure reconstruction of 2D/3D random materials via diffusion-based deep generative models.
    Lyu X; Ren X
    Sci Rep; 2024 Feb; 14(1):5041. PubMed ID: 38424207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-field simulation for the formation of porous microstructures due to phase separation in polymer solutions on substrates with different wettabilities.
    Farzaneh Kalourazi S; Wang F; Zhang H; Selzer M; Nestler B
    J Phys Condens Matter; 2022 Sep; 34(44):. PubMed ID: 35985313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a metadata scheme for the description of materials - the description of microstructures.
    Schmitz GJ; Böttger B; Apel M; Eiken J; Laschet G; Altenfeld R; Berger R; Boussinot G; Viardin A
    Sci Technol Adv Mater; 2016; 17(1):410-430. PubMed ID: 27877892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-supervised learning and prediction of microstructure evolution with convolutional recurrent neural networks.
    Yang K; Cao Y; Zhang Y; Fan S; Tang M; Aberg D; Sadigh B; Zhou F
    Patterns (N Y); 2021 May; 2(5):100243. PubMed ID: 34036288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse design of anisotropic spinodoid materials with prescribed diffusivity.
    Röding M; Wåhlstrand Skärström V; Lorén N
    Sci Rep; 2022 Oct; 12(1):17413. PubMed ID: 36258008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A data-driven framework for permeability prediction of natural porous rocks via microstructural characterization and pore-scale simulation.
    Fu J; Wang M; Chen B; Wang J; Xiao D; Luo M; Evans B
    Eng Comput; 2023 May; ():1-32. PubMed ID: 37362240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative Adversarial Networks and Mixture Density Networks-Based Inverse Modeling for Microstructural Materials Design.
    Mao Y; Yang Z; Jha D; Paul A; Liao WK; Choudhary A; Agrawal A
    Integr Mater Manuf Innov; 2022; 11(4):637-647. PubMed ID: 36530375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.
    Jiang Z; Chen W; Burkhart C
    J Microsc; 2013 Nov; 252(2):135-48. PubMed ID: 23961976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials.
    Chun S; Roy S; Nguyen YT; Choi JB; Udaykumar HS; Baek SS
    Sci Rep; 2020 Aug; 10(1):13307. PubMed ID: 32764643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast inverse design of microstructures via generative invariance networks.
    Lee XY; Waite JR; Yang CH; Pokuri BSS; Joshi A; Balu A; Hegde C; Ganapathysubramanian B; Sarkar S
    Nat Comput Sci; 2021 Mar; 1(3):229-238. PubMed ID: 38183201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High dimensional data driven statistical mechanics.
    Adachi Y; Sadamatsu S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i4-i5. PubMed ID: 25359842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Structure-Property Relationships in Porous Materials through Transfer Learning and Cross-Material Few-Shot Learning.
    Park H; Kang Y; Kim J
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56375-56385. PubMed ID: 37983088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesizing controlled microstructures of porous media using generative adversarial networks and reinforcement learning.
    Nguyen PCH; Vlassis NN; Bahmani B; Sun W; Udaykumar HS; Baek SS
    Sci Rep; 2022 May; 12(1):9034. PubMed ID: 35641549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning on Microstructure-Property Relationship of Lithium-Ion Conducting Oxide Solid Electrolytes.
    Zhang Y; Lin X; Zhai W; Shen Y; Chen S; Zhang Y; Yu Y; He X; Liu W
    Nano Lett; 2024 May; 24(17):5292-5300. PubMed ID: 38648075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Strategy for Dimensionality Reduction and Data Analysis Applied to Microstructure-Property Relationships of Nanoporous Metals.
    Huber N
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33917132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning approach for chemistry and processing history prediction from materials microstructure.
    Farizhandi AAK; Betancourt O; Mamivand M
    Sci Rep; 2022 Mar; 12(1):4552. PubMed ID: 35296736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure-based knowledge systems for capturing process-structure evolution linkages.
    Brough DB; Wheeler D; Warren JA; Kalidindi SR
    Acta Mater; 2017; 21():. PubMed ID: 33132737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porosity-permeability tensor relationship of closely and randomly packed fibrous biomaterials and biological tissues: Application to the brain white matter.
    Yuan T; Shen L; Dini D
    Acta Biomater; 2024 Jan; 173():123-134. PubMed ID: 37979635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.