These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39009555)
1. Temperature-Responsive Formation Cycling Enabling LiF-Rich Cathode-Electrolyte Interphase. Hong L; Zhang Y; Mei P; Ai B; Zhang Y; Zhou C; Bao X; Zhang W Angew Chem Int Ed Engl; 2024 Oct; 63(41):e202409069. PubMed ID: 39009555 [TBL] [Abstract][Full Text] [Related]
2. Formation of LiF-rich Cathode-Electrolyte Interphase by Electrolyte Reduction. Bai P; Ji X; Zhang J; Zhang W; Hou S; Su H; Li M; Deng T; Cao L; Liu S; He X; Xu Y; Wang C Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202202731. PubMed ID: 35395115 [TBL] [Abstract][Full Text] [Related]
3. Adsorptive Shield Derived Cathode Electrolyte Interphase Formation with Impregnation on LiNi Wang B; Wang J; Zhang L; Chu PK; Yu XF; He R; Bian S ACS Appl Mater Interfaces; 2024 Sep; 16(38):50747-50756. PubMed ID: 39276333 [TBL] [Abstract][Full Text] [Related]
4. Mechanically and Thermally Stable Cathode Electrolyte Interphase Enables High-temperature, High-voltage Li||LiCoO Wu D; Zhu C; Wang H; Huang J; Jiang G; Yang Y; Yang G; Tang D; Ma J Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202315608. PubMed ID: 38083796 [TBL] [Abstract][Full Text] [Related]
5. LiF-Rich Electrode-Electrolyte Interfaces Enabled by Bifunctional Electrolyte Additive to Achieve High-Performance Li/LiNi Lei Y; Xu X; Yin J; Xu J; Xi K; Wei L; Wu H; Jiang S; Gao Y ACS Appl Mater Interfaces; 2023 Oct; 15(40):46941-46951. PubMed ID: 37782685 [TBL] [Abstract][Full Text] [Related]
6. In Situ Electrochemical Polymerization of Cathode Electrolyte Interphase Enabling High-Performance Lithium Metal Batteries. Sun S; Yu J; Ma X; Fang P; Yang M; Yang J; Wu M; Hu Y; Yan F Small; 2024 Oct; 20(43):e2403145. PubMed ID: 38881358 [TBL] [Abstract][Full Text] [Related]
7. Cathode Electrolyte Interphase-Forming Additive for Improving Cycling Performance and Thermal Stability of Ni-Rich LiNi Lim DA; Shin YK; Seok JH; Hong D; Ahn KH; Lee CH; Kim DW ACS Appl Mater Interfaces; 2022 Dec; 14(49):54688-54697. PubMed ID: 36458341 [TBL] [Abstract][Full Text] [Related]
8. Armor-like Inorganic-rich Cathode Electrolyte Interphase Enabled by the Pentafluorophenylboronic Acid Additive for High-voltage Li||NCM622 Batteries. Yang Y; Wang H; Zhu C; Ma J Angew Chem Int Ed Engl; 2023 May; 62(22):e202300057. PubMed ID: 36929622 [TBL] [Abstract][Full Text] [Related]
9. Specific Adsorption-Oxidation Strategy in Cathode Inner Helmholtz Plane Enabling 4.6 V Practical Lithium-Ion Full Cells. Mao S; Mao J; Shen Z; Wu Q; Zhang S; Zhang J; Lu Y Nano Lett; 2023 Aug; 23(15):7014-7022. PubMed ID: 37523782 [TBL] [Abstract][Full Text] [Related]
10. Li Wang T; Jiao X; Rao L; Stout M; Gibson A; Kidner N; Choi J; Kim JH ACS Appl Mater Interfaces; 2023 Aug; 15(33):39234-39244. PubMed ID: 37572053 [TBL] [Abstract][Full Text] [Related]
11. Onset Potential for Electrolyte Oxidation and Ni-Rich Cathode Degradation in Lithium-Ion Batteries. Dose WM; Li W; Temprano I; O'Keefe CA; Mehdi BL; De Volder MFL; Grey CP ACS Energy Lett; 2022 Oct; 7(10):3524-3530. PubMed ID: 36277132 [TBL] [Abstract][Full Text] [Related]
12. Gradient Interphase Engineering Enabled by Anionic Redox for High-Voltage and Long-Life Li-Ion Batteries. Zhang B; Wu X; Luo H; Yan H; Chen Y; Zhou S; Yin J; Zhang K; Liao HG; Wang Q; Zou Y; Qiao Y; Sun SG J Am Chem Soc; 2024 Feb; 146(7):4557-4569. PubMed ID: 38345667 [TBL] [Abstract][Full Text] [Related]
13. Tailoring the performance of the LiNi Jadhav VV; Zhuang Z; Banitaba SN; Khademolqorani S; Gandla D; Zhang F; Tan DQ Dalton Trans; 2023 Oct; 52(40):14564-14572. PubMed ID: 37782116 [TBL] [Abstract][Full Text] [Related]
14. LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi Lei Y; Xu X; Yin J; Jiang S; Xi K; Wei L; Gao Y ACS Appl Mater Interfaces; 2023 Mar; 15(9):11777-11786. PubMed ID: 36808951 [TBL] [Abstract][Full Text] [Related]
15. Colloid Electrolyte Containing Li He X; Hao W; Shi Z; Tan Y; Yue X; Xie Y; Yan X; Liang Z ACS Nano; 2024 Aug; 18(33):22560-22571. PubMed ID: 39109932 [TBL] [Abstract][Full Text] [Related]
16. In Situ Visualized Cathode Electrolyte Interphase on LiCoO Lu W; Zhang J; Xu J; Wu X; Chen L ACS Appl Mater Interfaces; 2017 Jun; 9(22):19313-19318. PubMed ID: 28497948 [TBL] [Abstract][Full Text] [Related]
17. LiF/Li Lei Y; Xu X; Yin J; Xi K; Wei L; Zheng J; Wang Y; Wu H; Jiang S; Gao Y Small; 2024 Aug; 20(34):e2400365. PubMed ID: 38644295 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Liu W; Li J; Li W; Xu H; Zhang C; Qiu X Nat Commun; 2020 Jul; 11(1):3629. PubMed ID: 32686673 [TBL] [Abstract][Full Text] [Related]
19. A Phosphorofluoridate-Based Multifunctional Electrolyte Additive Enables Long Cycling of High-Energy Lithium-Ion Batteries. Park S; Choi G; Lim HY; Jung KM; Kwak SK; Choi NS ACS Appl Mater Interfaces; 2023 Jul; 15(28):33693-33702. PubMed ID: 37417931 [TBL] [Abstract][Full Text] [Related]
20. Role of Salt Concentration in Stabilizing Charged Ni-Rich Cathode Interfaces in Li-Ion Batteries. Phelan CME; Björklund E; Singh J; Fraser M; Didwal PN; Rees GJ; Ruff Z; Ferrer P; Grinter DC; Grey CP; Weatherup RS Chem Mater; 2024 Apr; 36(7):3334-3344. PubMed ID: 38617803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]