These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39010722)
1. Impacts of stream drying depend on stream network size and location of drying. Malish MC; Gao S; Allen DC; Neeson TM Ecol Appl; 2024 Sep; 34(6):e3015. PubMed ID: 39010722 [TBL] [Abstract][Full Text] [Related]
2. Ecosystem responses to channel restoration decline with stream size in urban river networks. Levi PS; McIntyre PB Ecol Appl; 2020 Jul; 30(5):e02107. PubMed ID: 32096578 [TBL] [Abstract][Full Text] [Related]
3. A comprehensive spatial analysis of invertebrate diversity within intermittent stream networks: Responses to drying and land use. Viza A; Burgazzi G; Menéndez M; Schäfer RB; Muñoz I Sci Total Environ; 2024 Jul; 935():173434. PubMed ID: 38782277 [TBL] [Abstract][Full Text] [Related]
4. Reconceptualizing the hyporheic zone for nonperennial rivers and streams. DelVecchia AG; Shanafield M; Zimmer MA; Busch MH; Krabbenhoft CA; Stubbington R; Kaiser KE; Burrows RM; Hosen J; Datry T; Kampf SK; Zipper SC; Fritz K; Costigan K; Allen DC Freshw Sci; 2022 Apr; 41(2):167-182. PubMed ID: 35846249 [TBL] [Abstract][Full Text] [Related]
5. Assessment of dam effects on streams and fish assemblages of the conterminous USA. Cooper AR; Infante DM; Daniel WM; Wehrly KE; Wang L; Brenden TO Sci Total Environ; 2017 May; 586():879-889. PubMed ID: 28233615 [TBL] [Abstract][Full Text] [Related]
6. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Jaeger KL; Olden JD; Pelland NA Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13894-9. PubMed ID: 25136090 [TBL] [Abstract][Full Text] [Related]
7. River ecosystem conceptual models and non-perennial rivers: A critical review. Allen DC; Datry T; Boersma KS; Bogan MT; Boulton AJ; Bruno D; Busch MH; Costigan KH; Dodds WK; Fritz KM; Godsey SE; Jones JB; Kaletova T; Kampf SK; Mims MC; Neeson TM; Olden JD; Pastor AV; Poff NL; Ruddell BL; Ruhi A; Singer G; Vezza P; Ward AS; Zimmer M WIREs Water; 2020 Aug; 7(5):. PubMed ID: 33365126 [TBL] [Abstract][Full Text] [Related]
8. Loss of functionally important and regionally endemic species from streams forced into intermittency by global warming. Carey N; Chester ET; Robson BJ Glob Chang Biol; 2023 Jun; 29(11):3019-3038. PubMed ID: 36811356 [TBL] [Abstract][Full Text] [Related]
9. Impacts of existing and planned hydropower dams on river fragmentation in the Balkan Region. Carolli M; Garcia de Leaniz C; Jones J; Belletti B; Huđek H; Pusch M; Pandakov P; Börger L; van de Bund W Sci Total Environ; 2023 May; 871():161940. PubMed ID: 36736393 [TBL] [Abstract][Full Text] [Related]
10. Habitat patchiness, ecological connectivity and the uneven recovery of boreal stream ecosystems from an experimental drought. Truchy A; Sarremejane R; Muotka T; Mykrä H; Angeler DG; Lehosmaa K; Huusko A; Johnson RK; Sponseller RA; McKie BG Glob Chang Biol; 2020 Jun; 26(6):3455-3472. PubMed ID: 32124522 [TBL] [Abstract][Full Text] [Related]
11. How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation. Fencl JS; Mather ME; Costigan KH; Daniels MD PLoS One; 2015; 10(11):e0141210. PubMed ID: 26540105 [TBL] [Abstract][Full Text] [Related]
12. Inconsistent Regulatory Mapping Quietly Threatens Rivers and Streams. Messager ML; Pella H; Datry T Environ Sci Technol; 2024 Oct; 58(39):17201-17214. PubMed ID: 39297202 [TBL] [Abstract][Full Text] [Related]
13. Headwater stream ecosystem: an important source of greenhouse gases to the atmosphere. Li M; Peng C; Zhang K; Xu L; Wang J; Yang Y; Li P; Liu Z; He N Water Res; 2021 Feb; 190():116738. PubMed ID: 33321453 [TBL] [Abstract][Full Text] [Related]
14. Fragmentation alters stream fish community structure in dendritic ecological networks. Perkin JS; Gido KB Ecol Appl; 2012 Dec; 22(8):2176-87. PubMed ID: 23387118 [TBL] [Abstract][Full Text] [Related]
15. Solar energy development and aquatic ecosystems in the southwestern United States: potential impacts, mitigation, and research needs. Grippo M; Hayse JW; O'Connor BL Environ Manage; 2015 Jan; 55(1):244-56. PubMed ID: 25331641 [TBL] [Abstract][Full Text] [Related]
16. Integration of juvenile habitat quality and river connectivity models to understand and prioritise the management of barriers for Atlantic salmon populations across spatial scales. Buddendorf WB; Jackson FL; Malcolm IA; Millidine KJ; Geris J; Wilkinson ME; Soulsby C Sci Total Environ; 2019 Mar; 655():557-566. PubMed ID: 30476835 [TBL] [Abstract][Full Text] [Related]
18. Litter decomposition across multiple spatial scales in stream networks. Tiegs SD; Akinwole PO; Gessner MO Oecologia; 2009 Aug; 161(2):343-51. PubMed ID: 19504124 [TBL] [Abstract][Full Text] [Related]
19. Manipulation of local environment produces different diversity outcomes depending on location within a river network. Tornwall BM; Swan CM; Brown BL Oecologia; 2017 Jul; 184(3):663-674. PubMed ID: 28608022 [TBL] [Abstract][Full Text] [Related]
20. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin. Roberts JJ; Fausch KD; Peterson DP; Hooten MB Glob Chang Biol; 2013 May; 19(5):1383-98. PubMed ID: 23505098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]