These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 39010789)

  • 21. Role of the electric field affected zone (EFAZ) on the electrophoretic deposition of TiO2 nanoparticles under symmetric low-frequency AC electric fields.
    Esmaeilzadeh J; Ghashghaie S; Dehkordi BR; Riahifar R
    J Phys Chem B; 2013 Feb; 117(6):1660-3. PubMed ID: 23094645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency-dependent force between ac-voltage-biased plates in electrolyte solutions.
    Checa M; Millan-Solsona R; Gomila G
    Phys Rev E; 2019 Aug; 100(2-1):022604. PubMed ID: 31574759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size-Tunable Assembly of Gold Nanoparticles Using Competitive AC Electrokinetics.
    Goel M; Singh A; Bhola A; Gupta S
    Langmuir; 2019 Jun; 35(24):8015-8024. PubMed ID: 30879298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enabling the characterization of the nonlinear electrokinetic properties of particles using low voltage.
    de Los Santos-Ramirez JM; Mendiola-Escobedo CA; Cotera-Sarabia JM; Gallo-Villanueva RC; Martinez-Duarte R; Perez-Gonzalez VH
    Analyst; 2024 Jul; 149(14):3839-3849. PubMed ID: 38855835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scattering of Metal Colloids by a Circular Post under Electric Fields.
    Flores-Mena JE; García-Sánchez P; Ramos A
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields.
    Zhu J; Xuan X
    Electrophoresis; 2009 Aug; 30(15):2668-75. PubMed ID: 19621378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow.
    Ng WY; Ramos A; Lam YC; Wijaya IP; Rodriguez I
    Lab Chip; 2011 Dec; 11(24):4241-7. PubMed ID: 22052533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophoretic separations using sweeping fields.
    Ying F; Mastrangelo CH; Burke DT; Burns MA
    Electrophoresis; 1998 Jun; 19(8-9):1388-93. PubMed ID: 9694287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency dependence of the cardiac threshold to alternating current between 10 Hz and 160 Hz.
    Malkin RA; de Jongh Curry A
    Med Biol Eng Comput; 2003 Nov; 41(6):640-5. PubMed ID: 14686589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
    Islam N; Reyna J
    Electrophoresis; 2012 Apr; 33(7):1191-7. PubMed ID: 22539322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal impact of replacing constant voltage by low-frequency sine wave voltage in RF ablation computer modeling.
    Pérez JJ; González-Suárez A; Nadal E; Berjano E
    Comput Methods Programs Biomed; 2020 Oct; 195():105673. PubMed ID: 32750633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contact charge electrophoresis: experiment and theory.
    Drews AM; Cartier CA; Bishop KJ
    Langmuir; 2015 Apr; 31(13):3808-14. PubMed ID: 25785396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-particle dynamics on an electrode in ac electric fields.
    Kim J; Guelcher SA; Garoff S; Anderson JL
    Adv Colloid Interface Sci; 2002 Feb; 96(1-3):131-42. PubMed ID: 11908784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative study of electrophoretic and electroosmotic enhancement during alternating current iontophoresis across synthetic membranes.
    Yan G; Li SK; Peck KD; Zhu H; Higuchi WI
    J Pharm Sci; 2004 Dec; 93(12):2895-908. PubMed ID: 15459891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-range transport and directed assembly of charged colloids under aperiodic electrodiffusiophoresis.
    Wang K; Leville S; Behdani B; Silvera Batista CA
    Soft Matter; 2022 Aug; 18(32):5949-5959. PubMed ID: 35920440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-frequency electrokinetics in a periodic pillar array for particle separation.
    Calero V; Fernández-Mateo R; Morgan H; García-Sánchez P; Ramos A
    J Chromatogr A; 2023 Sep; 1706():464240. PubMed ID: 37544238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dielectrophoretic Manipulation of Janus Particle in Conductive Media for Biomedical Applications.
    Lee M; Won JB; Jung DH; Kim J; Choi Y; Akyildiz K; Choi J; Kim K; Cho J; Yoon H; Koo HJ
    Biotechnol J; 2020 Dec; 15(12):e2000343. PubMed ID: 33067912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reservoir-based dielectrophoresis for microfluidic particle separation by charge.
    Patel S; Qian S; Xuan X
    Electrophoresis; 2013 Apr; 34(7):961-8. PubMed ID: 23161644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wall-induced lateral migration in particle electrophoresis through a rectangular microchannel.
    Liang L; Ai Y; Zhu J; Qian S; Xuan X
    J Colloid Interface Sci; 2010 Jul; 347(1):142-6. PubMed ID: 20400083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.