These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39011562)

  • 1. Site-Selective Synthesis of Bilayer Graphene on Cu Substrates Using Titanium as a Carbon Diffusion Barrier.
    Song Q; Zhang Y; Chen Q; Wu S; Yan X; He K; Gao G; Chen Q; Wang S
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38355-38364. PubMed ID: 39011562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast synthesis of large-area bilayer graphene film on Cu.
    Zhang J; Liu X; Zhang M; Zhang R; Ta HQ; Sun J; Wang W; Zhu W; Fang T; Jia K; Sun X; Zhang X; Zhu Y; Shao J; Liu Y; Gao X; Yang Q; Sun L; Li Q; Liang F; Chen H; Zheng L; Wang F; Yin W; Wei X; Yin J; Gemming T; Rummeli MH; Liu H; Peng H; Lin L; Liu Z
    Nat Commun; 2023 Jun; 14(1):3199. PubMed ID: 37268632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Area High-Quality AB-Stacked Bilayer Graphene on h-BN/Pt Foil by Chemical Vapor Deposition.
    Qian Y; Kang DJ
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29069-29075. PubMed ID: 30084250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.
    Zhao P; Kim S; Chen X; Einarsson E; Wang M; Song Y; Wang H; Chiashi S; Xiang R; Maruyama S
    ACS Nano; 2014 Nov; 8(11):11631-8. PubMed ID: 25363605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystalline Bilayer Graphene with Preferential Stacking from Ni-Cu Gradient Alloy.
    Gao Z; Zhang Q; Naylor CH; Kim Y; Abidi IH; Ping J; Ducos P; Zauberman J; Zhao MQ; Rappe AM; Luo Z; Ren L; Johnson ATC
    ACS Nano; 2018 Mar; 12(3):2275-2282. PubMed ID: 29509401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotation of Graphene on Cu during Chemical Vapor Deposition and Its Application to Control the Stacking Angle of Bilayer Graphene.
    Cho H; Son Y; Choi HC
    Nano Lett; 2022 Apr; 22(8):3323-3327. PubMed ID: 35389213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epitaxial nucleation of CVD bilayer graphene on copper.
    Song Y; Zhuang J; Song M; Yin S; Cheng Y; Zhang X; Wang M; Xiang R; Xia Y; Maruyama S; Zhao P; Ding F; Wang H
    Nanoscale; 2016 Dec; 8(48):20001-20007. PubMed ID: 27858033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isothermal Growth and Stacking Evolution in Highly Uniform Bernal-Stacked Bilayer Graphene.
    Solís-Fernández P; Terao Y; Kawahara K; Nishiyama W; Uwanno T; Lin YC; Yamamoto K; Nakashima H; Nagashio K; Hibino H; Suenaga K; Ago H
    ACS Nano; 2020 Jun; 14(6):6834-6844. PubMed ID: 32407070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene.
    Hao Y; Wang L; Liu Y; Chen H; Wang X; Tan C; Nie S; Suk JW; Jiang T; Liang T; Xiao J; Ye W; Dean CR; Yakobson BI; McCarty KF; Kim P; Hone J; Colombo L; Ruoff RS
    Nat Nanotechnol; 2016 May; 11(5):426-31. PubMed ID: 26828845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectively Patterned Regrowth of Bilayer Graphene for Self-Integrated Electronics by Sequential Chemical Vapor Deposition.
    Yi D; Jeon S; Hong SW
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40014-40023. PubMed ID: 30365886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grain size control in the fabrication of large single-crystal bilayer graphene structures.
    Gan L; Zhang H; Wu R; Zhang Q; Ou X; Ding Y; Sheng P; Luo Z
    Nanoscale; 2015 Feb; 7(6):2391-9. PubMed ID: 25563192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CVD Bilayer Graphene Spin Valves with 26 μm Spin Diffusion Length at Room Temperature.
    Bisswanger T; Winter Z; Schmidt A; Volmer F; Watanabe K; Taniguchi T; Stampfer C; Beschoten B
    Nano Lett; 2022 Jun; 22(12):4949-4955. PubMed ID: 35649273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface.
    Zhang X; Wang L; Xin J; Yakobson BI; Ding F
    J Am Chem Soc; 2014 Feb; 136(8):3040-7. PubMed ID: 24499486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Interlayer Contact Conductance in Twisted Bilayer Graphene.
    Yu Z; Song A; Sun L; Li Y; Gao L; Peng H; Ma T; Liu Z; Luo J
    Small; 2020 Apr; 16(15):e1902844. PubMed ID: 31490630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Conductive and Transparent Large-Area Bilayer Graphene Realized by MoCl
    Kinoshita H; Jeon I; Maruyama M; Kawahara K; Terao Y; Ding D; Matsumoto R; Matsuo Y; Okada S; Ago H
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28922479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential growth and twisted stacking of chemical-vapor-deposited graphene.
    Liu J; Zhang X; Zhang S; Zou Z; Zhang Z; Wu Z; Xia Y; Li Q; Zhao P; Wang H
    Nanoscale Adv; 2021 Feb; 3(4):983-990. PubMed ID: 36133285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uniformity of large-area bilayer graphene grown by chemical vapor deposition.
    Sheng Y; Rong Y; He Z; Fan Y; Warner JH
    Nanotechnology; 2015 Oct; 26(39):395601. PubMed ID: 26349521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of twisted bilayer graphene through two-stage chemical vapor deposition.
    Chu CM; Woon WY
    Nanotechnology; 2020 Oct; 31(43):435603. PubMed ID: 32634795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.