These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39011749)

  • 1. Giant thermal conductivity and strain thermal response of nitrogen substituted diamane: a machine-learning-based prediction.
    Wang B; Huang Z; Xu X; Fan S; Zhao K; Zhu J
    Nanoscale; 2024 Aug; 16(30):14387-14401. PubMed ID: 39011749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial thermal transport between graphene and diamane.
    Hong Y; Kretchmer JS
    J Chem Phys; 2022 Apr; 156(16):164703. PubMed ID: 35489998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering.
    Zhu L; Li W; Ding F
    Nanoscale; 2019 Mar; 11(10):4248-4257. PubMed ID: 30623946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructure engineering of two-dimensional diamonds toward high thermal conductivity and approaching zero Poisson's ratio.
    Hu Y; Li D; Feng C; Li S; Chen B; Li D; Zhang G
    Phys Chem Chem Phys; 2022 Jun; 24(25):15340-15348. PubMed ID: 35703326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure.
    Yang Z; Yuan K; Meng J; Hu M
    Nanoscale; 2020 Oct; 12(37):19178-19190. PubMed ID: 32926048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant manipulation of thermal conductivity anisotropy in black phosphorene under external electric fields.
    Yang Z; Zhang M; Gu W; Xu X; Liu C; Lan X
    Phys Chem Chem Phys; 2024 Jul; 26(29):20000-20008. PubMed ID: 39005190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon stability boundary and deep elastic strain engineering of lattice thermal conductivity.
    Shi Z; Tsymbalov E; Shi W; Barr A; Li Q; Li J; Chen XQ; Dao M; Suresh S; Li J
    Proc Natl Acad Sci U S A; 2024 Feb; 121(8):e2313840121. PubMed ID: 38354259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Thermal Conductivity of Wurtzite Boron Arsenide Predicted by Including Four-Phonon Scattering with Machine Learning Potential.
    Liu Z; Yang X; Zhang B; Li W
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53409-53415. PubMed ID: 34415723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals.
    Kocabaş T; Çakır D; Gülseren O; Ay F; Kosku Perkgöz N; Sevik C
    Nanoscale; 2018 Apr; 10(16):7803-7812. PubMed ID: 29664085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The important role of strain on phonon hydrodynamics in diamond-like bi-layer graphene.
    Hu Y; Li D; Yin Y; Li S; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Aug; 31(33):335711. PubMed ID: 32353835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of isotropic strain on the structure and transport properties of half-Heusler alloy BiBaK: a first-principles investigation.
    Wei J; Guo Y; Wang G
    RSC Adv; 2024 Jan; 14(1):463-477. PubMed ID: 38173595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon transport and thermoelectric properties of semiconducting Bi
    Rashid Z; Nissimagoudar AS; Li W
    Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-Driven High Thermal Conductivity in Hexagonal Boron Phosphide Monolayer.
    Chen X; Wang G; Li B; Wang N
    Langmuir; 2024 Feb; 40(6):3095-3104. PubMed ID: 38299976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural stability and electronic and mechanical properties of nitrogen- and boron-doped fluorinated diamane.
    Gao L; Liu Y; Liang Y; Gao N; Liu J; Li H
    Phys Chem Chem Phys; 2023 Sep; 25(36):24518-24525. PubMed ID: 37656439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of novel ground-state structures and analysis of phonon transport in two-dimensional Ge
    Ali A; Shin YH
    Phys Chem Chem Phys; 2023 Dec; 26(1):602-611. PubMed ID: 38086636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significant enhancement of lattice thermal conductivity of monolayer AlN under bi-axial strain: a first principles study.
    Banerjee A; Das BK; Chattopadhyay KK
    Phys Chem Chem Phys; 2022 Jul; 24(26):16065-16074. PubMed ID: 35735192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and thermoelectric properties of semiconducting Bi
    Cao SH; Zhang T; Hu CE; Chen XR; Geng HY
    Phys Chem Chem Phys; 2022 Nov; 24(43):26753-26763. PubMed ID: 36314268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles prediction of the thermal conductivity of two configurations of difluorinated graphene monolayer.
    Chen A; Tong H; Wu CW; Li SY; Jia PZ; Zhou WX
    Phys Chem Chem Phys; 2023 Dec; 26(1):421-429. PubMed ID: 38078535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-low thermal conductivity and high thermoelectric performance of two-dimensional triphosphides (InP
    Sun Z; Yuan K; Chang Z; Bi S; Zhang X; Tang D
    Nanoscale; 2020 Feb; 12(5):3330-3342. PubMed ID: 31976500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.
    Kang JS; Wu H; Hu Y
    Nano Lett; 2017 Dec; 17(12):7507-7514. PubMed ID: 29115845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.