These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39011966)
1. Elucidating the Mechanism of Iron-Catalyzed Graphitization: The First Observation of Homogeneous Solid-State Catalysis. Hunter RD; Takeguchi M; Hashimoto A; Ridings KM; Hendy SC; Zakharov D; Warnken N; Isaacs J; Fernandez-Muñoz S; Ramirez-Rico J; Schnepp Z Adv Mater; 2024 Sep; 36(36):e2404170. PubMed ID: 39011966 [TBL] [Abstract][Full Text] [Related]
2. In situ observation of carbon-nanopillar tubulization caused by liquidlike iron particles. Ichihashi T; Fujita J; Ishida M; Ochiai Y Phys Rev Lett; 2004 May; 92(21):215702. PubMed ID: 15245293 [TBL] [Abstract][Full Text] [Related]
3. Preparation and formation mechanism of biomass-based graphite carbon catalyzed by iron nitrate under a low-temperature condition. Sun Z; Yao D; Cao C; Zhang Z; Zhang L; Zhu H; Yuan Q; Yi B J Environ Manage; 2022 Sep; 318():115555. PubMed ID: 35738129 [TBL] [Abstract][Full Text] [Related]
4. Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports. Sevilla M; Salinas Martínez-de Lecea C; Valdés-Solís T; Morallón E; Fuertes AB Phys Chem Chem Phys; 2008 Mar; 10(10):1433-42. PubMed ID: 18309400 [TBL] [Abstract][Full Text] [Related]
5. Iron-Catalyzed Laser-Induced Graphitization - Multiscale Analysis of the Structural Evolution and Underlying Mechanism. Dreimol CH; Kürsteiner R; Ritter M; Parrilli A; Edberg J; Garemark J; Stucki S; Yan W; Tinello S; Panzarasa G; Burgert I Small; 2024 Dec; 20(49):e2405558. PubMed ID: 39279332 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical Graphitization: An Efficient Conversion of Amorphous Carbons to Nanostructured Graphites. Jin X; He R; Dai S Chemistry; 2017 Aug; 23(48):11455-11459. PubMed ID: 28598566 [TBL] [Abstract][Full Text] [Related]
7. Milling as a route to porous graphitic carbons from biomass. Hunter RD; Davies J; Hérou SJA; Kulak A; Schnepp Z Philos Trans A Math Phys Eng Sci; 2021 Nov; 379(2209):20200336. PubMed ID: 34510928 [TBL] [Abstract][Full Text] [Related]
8. Ecofriendly Synthesis of Waste-Tire-Derived Graphite Nanoflakes by a Low-Temperature Electrochemical Graphitization Process toward a Silicon-Based Anode with a High-Performance Lithium-Ion Battery. Wu SC; Lin CW; Chang PC; Yang TY; Tang SY; Wu DC; Liao CR; Wang YC; Lee L; Yu YJ; Chueh YL ACS Appl Mater Interfaces; 2023 Mar; 15(12):15279-15289. PubMed ID: 36921119 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and Growth of Green Graphene from Biochar Revealed by Magnetic Properties of Iron Catalyst. Ghogia AC; Romero Millán LM; White CE; Nzihou A ChemSusChem; 2023 Feb; 16(3):e202201864. PubMed ID: 36336661 [TBL] [Abstract][Full Text] [Related]
10. Thermal Evolution of C-Fe-Bi Nanocomposite System: From Nanoparticle Formation to Heterogeneous Graphitization Stage. Rusu MM; Vulpoi A; Maurin I; Cotet LC; Pop LC; Fort CI; Baia M; Baia L; Florea I Microsc Microanal; 2022 Mar; ():1-13. PubMed ID: 35229707 [TBL] [Abstract][Full Text] [Related]
11. Graphitic Mesoporous Carbon Loaded with Iron-Nickel Hydroxide for Superior Oxygen Evolution Reactivity. Wang L; Huang X; Xue J ChemSusChem; 2016 Jul; 9(14):1835-42. PubMed ID: 27312811 [TBL] [Abstract][Full Text] [Related]
12. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. Steiner SA; Baumann TF; Bayer BC; Blume R; Worsley MA; MoberlyChan WJ; Shaw EL; Schlögl R; Hart AJ; Hofmann S; Wardle BL J Am Chem Soc; 2009 Sep; 131(34):12144-54. PubMed ID: 19663436 [TBL] [Abstract][Full Text] [Related]
13. Outside-in catalytic graphitization method for synthesis of dispersible and uniform graphitic porous carbon nanospheres. Wang QG; Li CL; He L; Yu XF; Zhang WP; Lu AH J Colloid Interface Sci; 2021 Oct; 599():586-594. PubMed ID: 33971567 [TBL] [Abstract][Full Text] [Related]
15. Unraveling the Catalytic Graphitization Mechanism of Ni-P Electroless Plated Cokes via In Situ Analytical Approaches. Choi GB; Ahn JR; Kim J; Seo TH; Lee SW ACS Omega; 2024 Feb; 9(6):6741-6748. PubMed ID: 38371758 [TBL] [Abstract][Full Text] [Related]
16. Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Yoshida H; Takeda S; Uchiyama T; Kohno H; Homma Y Nano Lett; 2008 Jul; 8(7):2082-6. PubMed ID: 18505300 [TBL] [Abstract][Full Text] [Related]
17. Upcycling of Plastic Wastes and Biomass for Sustainable Graphitic Carbon Production: A Critical Review. Weldekidan H; Mohanty AK; Misra M ACS Environ Au; 2022 Nov; 2(6):510-522. PubMed ID: 36411867 [TBL] [Abstract][Full Text] [Related]
18. In situ atomic-scale observation of irradiation induced carbon nanocrystalline formation from dense carbon clusters. Wang C; Li Z; Ling S; Lei T; Su J Nanotechnology; 2018 Mar; 29(11):115602. PubMed ID: 29313835 [TBL] [Abstract][Full Text] [Related]
19. Preparation of Hierarchically Porous Graphitic Carbon Spheres and Their Applications in Supercapacitors and Dye Adsorption. Li S; Li F; Wang J; Tian L; Zhang H; Zhang S Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30126156 [TBL] [Abstract][Full Text] [Related]