These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39011966)
21. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts. Dunens OM; MacKenzie KJ; Harris AT Environ Sci Technol; 2009 Oct; 43(20):7889-94. PubMed ID: 19921910 [TBL] [Abstract][Full Text] [Related]
22. Study of Ni-Catalyzed Graphitization Process of Diamond by Romanyuk O; Varga M; Tulic S; Izak T; Jiricek P; Kromka A; Skakalova V; Rezek B J Phys Chem C Nanomater Interfaces; 2018 Mar; 122(12):6629-6636. PubMed ID: 30263086 [TBL] [Abstract][Full Text] [Related]
23. Pre-heating effect on the catalytic growth of partially filled carbon nanotubes by chemical vapor deposition. Sengupta J; Jacob C J Nanosci Nanotechnol; 2010 May; 10(5):3064-71. PubMed ID: 20358900 [TBL] [Abstract][Full Text] [Related]
24. Efficient Visible-Light Photocatalysis and Antibacterial Activity of TiO Thambiliyagodage C; Usgodaarachchi L; Jayanetti M; Liyanaarachchi C; Kandanapitiye M; Vigneswaran S ACS Omega; 2022 Jul; 7(29):25403-25421. PubMed ID: 35910103 [TBL] [Abstract][Full Text] [Related]
25. From waste corn straw to graphitic porous carbon: A trade-off between specific surface area and graphitization degree for efficient peroxydisulfate activation. Tang X; Dong T; Wang M; Ma S; Xu S; Wang J; Gao B; Huang Y; Yang Q; Hua D; Zhan S J Hazard Mater; 2024 Jun; 471():134422. PubMed ID: 38677118 [TBL] [Abstract][Full Text] [Related]
26. Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution. Ma J; Yang M; Yu F; Chen J J Colloid Interface Sci; 2015 Apr; 444():24-32. PubMed ID: 25585283 [TBL] [Abstract][Full Text] [Related]
27. In situ activation graphitization to fabricate hierarchical porous graphitic carbon for supercapacitor. Zhao Y; Zhang X Sci Rep; 2021 Mar; 11(1):6825. PubMed ID: 33767230 [TBL] [Abstract][Full Text] [Related]
28. Room-temperature graphitization in a solid-phase reaction. Elnobi S; Sharma S; Araby MI; Paudel B; Kalita G; Mohd Yusop MZ; Ayhan ME; Tanemura M RSC Adv; 2020 Jan; 10(2):914-922. PubMed ID: 35494459 [TBL] [Abstract][Full Text] [Related]
29. A carbon nanotube confinement strategy to implement homogeneous asymmetric catalysis in the solid phase. Hashimoto K; Kumagai N; Shibasaki M Chemistry; 2015 Mar; 21(11):4262-6. PubMed ID: 25641756 [TBL] [Abstract][Full Text] [Related]
30. Carbon nanotubes synthesis over coal ash based catalysts using polypropylene waste via CVD process: Influence of catalyst and reaction temperature. Chitriv SP; Saini V; Ratna D; P VR J Environ Manage; 2024 Aug; 366():121881. PubMed ID: 39018861 [TBL] [Abstract][Full Text] [Related]
31. Understanding the graphitization and growth of free-standing nanocrystalline graphene using in situ transmission electron microscopy. Shyam Kumar CN; Chakravadhanula VSK; Riaz A; Dehm S; Wang D; Mu X; Flavel B; Krupke R; Kübel C Nanoscale; 2017 Sep; 9(35):12835-12842. PubMed ID: 28799608 [TBL] [Abstract][Full Text] [Related]
32. Mössbauer Study on the Conversion of Different Iron-Based Catalysts Used in Carbon Nanotube Synthesis. Kořenek M; Ivanova T; Svačinová V; Mašláň M Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063705 [TBL] [Abstract][Full Text] [Related]
33. Electron energy loss spectroscopy (EELS) of iron Fischer-Tropsch catalysts. Jin Y; Xu H; Datye AK Microsc Microanal; 2006 Apr; 12(2):124-34. PubMed ID: 17481348 [TBL] [Abstract][Full Text] [Related]
34. Structure of Coal-Derived Metal-Supported Few-Layer Graphene Composite Materials Synthesized Using a Microwave-Assisted Catalytic Graphitization Process. Islam F; Tahmasebi A; Wang R; Yu J Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34202042 [TBL] [Abstract][Full Text] [Related]
35. Metal doped carbon nanoneedles and effect of carbon organization with activity for hydrogen evolution reaction (HER). Araujo RA; Rubira AF; Asefa T; Silva R Carbohydr Polym; 2016 Feb; 137():719-725. PubMed ID: 26686184 [TBL] [Abstract][Full Text] [Related]
36. Controllable synthesis of graphitic carbon nanostructures from ion-exchange resin-iron complex via solid-state pyrolysis process. Wang L; Tian C; Wang B; Wang R; Zhou W; Fu H Chem Commun (Camb); 2008 Nov; (42):5411-3. PubMed ID: 18985227 [TBL] [Abstract][Full Text] [Related]
37. Real-time observation of tubule formation from amorphous carbon nanowires under high-bias Joule heating. Huang JY; Chen S; Ren ZF; Chen G; Dresselhaus MS Nano Lett; 2006 Aug; 6(8):1699-705. PubMed ID: 16895359 [TBL] [Abstract][Full Text] [Related]
38. Influence of catalyst structures on carbon nanotubes growth via methane-CVD. Wang H; Sun L; Wang S; Xiao Z J Nanosci Nanotechnol; 2009 Feb; 9(2):848-52. PubMed ID: 19441406 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of bimetallic nanoparticles and their application to growth of multiwalled carbon nanotube forest. Choi BH; Kim YM; Kim YB; Lee JH; Shin DC J Nanosci Nanotechnol; 2010 May; 10(5):3543-6. PubMed ID: 20358996 [TBL] [Abstract][Full Text] [Related]
40. Bifunctional iron-modified graphitic carbon nitride (g-C Kim JG; Kim HB; Choi JH; Baek K Environ Res; 2020 Sep; 188():109832. PubMed ID: 32798950 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]