These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. RNA-seq based transcriptional analysis of Saccharomyces cerevisiae and Lachancea thermotolerans in mixed-culture fermentations under anaerobic conditions. Shekhawat K; Patterton H; Bauer FF; Setati ME BMC Genomics; 2019 Feb; 20(1):145. PubMed ID: 30777005 [TBL] [Abstract][Full Text] [Related]
3. Phenotypic characterization of cell-to-cell interactions between two yeast species during alcoholic fermentation. Luyt NA; Beaufort S; Divol B; Setati ME; Taillandier P; Bauer FF World J Microbiol Biotechnol; 2021 Sep; 37(11):186. PubMed ID: 34580785 [TBL] [Abstract][Full Text] [Related]
4. The transcriptomic response of a wine strain of Lachancea thermotolerans to oxygen deprivation. Shekhawat K; Bauer FF; Setati ME FEMS Yeast Res; 2020 Oct; 20(7):. PubMed ID: 32960268 [TBL] [Abstract][Full Text] [Related]
5. Investigating the biochemical and fermentation attributes of Lachancea species and strains: Deciphering the potential contribution to wine chemical composition. Porter TJ; Divol B; Setati ME Int J Food Microbiol; 2019 Feb; 290():273-287. PubMed ID: 30412799 [TBL] [Abstract][Full Text] [Related]
7. Influence of cell-cell contact between L. thermotolerans and S. cerevisiae on yeast interactions and the exo-metabolome. Petitgonnet C; Klein GL; Roullier-Gall C; Schmitt-Kopplin P; Quintanilla-Casas B; Vichi S; Julien-David D; Alexandre H Food Microbiol; 2019 Oct; 83():122-133. PubMed ID: 31202403 [TBL] [Abstract][Full Text] [Related]
8. A Transcriptomic Analysis of Higher-Order Ecological Interactions in a Eukaryotic Model Microbial Ecosystem. Conacher CG; Naidoo-Blassoples RK; Rossouw D; Bauer FF mSphere; 2022 Dec; 7(6):e0043622. PubMed ID: 36259715 [TBL] [Abstract][Full Text] [Related]
9. Saccharomyces cerevisiae and Hanseniaspora uvarum mixed starter cultures: Influence of microbial/physical interactions on wine characteristics. Pietrafesa A; Capece A; Pietrafesa R; Bely M; Romano P Yeast; 2020 Nov; 37(11):609-621. PubMed ID: 32567694 [TBL] [Abstract][Full Text] [Related]
10. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Gobbi M; Comitini F; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M Food Microbiol; 2013 Apr; 33(2):271-81. PubMed ID: 23200661 [TBL] [Abstract][Full Text] [Related]
11. Precursors consumption preferences and thiol release capacity of the wine yeasts Saccharomyces cerevisiae, Torulaspora delbrueckii, and Lachancea thermotolerans. Vicente J; Kiene F; Fracassetti D; De Noni I; Shemehen R; Tarasov A; Dobrydnev AV; Marquina D; Santos A; Rauhut D; Belda I; Ruiz J Int J Food Microbiol; 2024 Dec; 425():110858. PubMed ID: 39163814 [TBL] [Abstract][Full Text] [Related]
12. Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization. Alonso-Del-Real J; Pérez-Torrado R; Querol A; Barrio E Environ Microbiol; 2019 May; 21(5):1627-1644. PubMed ID: 30672093 [TBL] [Abstract][Full Text] [Related]
13. Occurrence and enological properties of two new non-conventional yeasts (Nakazawaea ishiwadae and Lodderomyces elongisporus) in wine fermentations. Ruiz J; Ortega N; Martín-Santamaría M; Acedo A; Marquina D; Pascual O; Rozès N; Zamora F; Santos A; Belda I Int J Food Microbiol; 2019 Sep; 305():108255. PubMed ID: 31252247 [TBL] [Abstract][Full Text] [Related]
14. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae. Shekhawat K; Bauer FF; Setati ME Appl Microbiol Biotechnol; 2017 Mar; 101(6):2479-2491. PubMed ID: 27913851 [TBL] [Abstract][Full Text] [Related]
15. Specific Phenotypic Traits of Starmerella bacillaris Related to Nitrogen Source Consumption and Central Carbon Metabolite Production during Wine Fermentation. Englezos V; Cocolin L; Rantsiou K; Ortiz-Julien A; Bloem A; Dequin S; Camarasa C Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858207 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptomic approach to investigate differences in wine yeast physiology and metabolism during fermentation. Rossouw D; Olivares-Hernandes R; Nielsen J; Bauer FF Appl Environ Microbiol; 2009 Oct; 75(20):6600-12. PubMed ID: 19700545 [TBL] [Abstract][Full Text] [Related]
17. The utilisation of nitrogenous compounds by commercial non-Saccharomyces yeasts associated with wine. Prior KJ; Bauer FF; Divol B Food Microbiol; 2019 Jun; 79():75-84. PubMed ID: 30621878 [TBL] [Abstract][Full Text] [Related]
18. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. Binati RL; Lemos Junior WJF; Luzzini G; Slaghenaufi D; Ugliano M; Torriani S Int J Food Microbiol; 2020 Apr; 318():108470. PubMed ID: 31841784 [TBL] [Abstract][Full Text] [Related]
19. Use of commercial or indigenous yeast impacts the Whiteley LE; Rieckh G; Diggle FL; Alaga ZM; Nachbaur EH; Nachbaur WT; Whiteley M Microbiol Spectr; 2024 Nov; 12(11):e0119424. PubMed ID: 39287451 [TBL] [Abstract][Full Text] [Related]