These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 39012475)

  • 1. A 10-min reduction in cerebral blood flow does not alter post-intervention executive function: evidence from lower-body negative pressure.
    Van Riesen J; Shirzad M; Edgar C; Tari B; Heath M
    Exp Brain Res; 2024 Sep; 242(9):2193-2205. PubMed ID: 39012475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased cerebral blood flow supports a single-bout postexercise benefit to executive function: evidence from hypercapnia.
    Tari B; Vanhie JJ; Belfry GR; Shoemaker JK; Heath M
    J Neurophysiol; 2020 Sep; 124(3):930-940. PubMed ID: 32755360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct cortical haemodynamics during squat-stand and continuous aerobic exercise do not influence the magnitude of a postexercise executive function benefit.
    Dalton C; Ahn J; Jeyarajan G; Krigolson OE; Heath M
    J Sports Sci; 2023 Sep; 41(15):1459-1470. PubMed ID: 37884880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 10-min exposure to a 2.5% hypercapnic environment increases cerebral blood blow but does not impact executive function.
    Shirzad M; Van Riesen J; Behboodpour N; Heath M
    Life Sci Space Res (Amst); 2024 Feb; 40():143-150. PubMed ID: 38245339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single bout of aerobic exercise does not alter inhibitory control preparatory set cerebral hemodynamics: Evidence from the antisaccade task.
    Jeyarajan G; Ayaz A; Herold F; Zou L; Heath M
    Brain Cogn; 2024 Aug; 179():106182. PubMed ID: 38824809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of hypercapnia on regional cerebral blood flow regulation during progressive lower-body negative pressure.
    Thrall SF; Tymko MM; Green CLM; Wynnyk KI; Brandt RA; Day TA
    Eur J Appl Physiol; 2021 Jan; 121(1):339-349. PubMed ID: 33089364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia.
    Kay VL; Rickards CA
    Am J Physiol Regul Integr Comp Physiol; 2016 Feb; 310(4):R375-83. PubMed ID: 26676249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute reduction in posterior cerebral blood flow following isometric handgrip exercise is augmented by lower body negative pressure.
    Washio T; Vranish JR; Kaur J; Young BE; Katayama K; Fadel PJ; Ogoh S
    Physiol Rep; 2018 Oct; 6(20):e13886. PubMed ID: 30338667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations.
    Tymko MM; Rickards CA; Skow RJ; Ingram-Cotton NC; Howatt MK; Day TA
    Physiol Rep; 2016 Sep; 4(17):. PubMed ID: 27634108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress.
    Durocher JJ; Carter JR; Cooke WH; Young AH; Harwood MH
    Aerosp Med Hum Perform; 2015 Aug; 86(8):688-92. PubMed ID: 26387891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of supine cycling and progressive lower body negative pressure on cerebral blood velocity responses.
    Miutz LN; Burma JS; Van Roessel RK; Johnson NE; Phillips AA; Emery CA; Brassard P; Smirl JD
    J Appl Physiol (1985); 2023 Aug; 135(2):316-325. PubMed ID: 37348016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral blood velocity during concurrent supine cycling, lower body negative pressure, and head-up tilt challenges: implications for concussion rehabilitation.
    Burma JS; Seok J; Johnston NE; Smirl JD
    Physiol Meas; 2023 Aug; 44(8):. PubMed ID: 37531960
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of head-down-tilt bed rest on cerebral hemodynamics during orthostatic stress.
    Zhang R; Zuckerman JH; Pawelczyk JA; Levine BD
    J Appl Physiol (1985); 1997 Dec; 83(6):2139-45. PubMed ID: 9390992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the efficacy of an iPad® app in determining a single bout of exercise benefit to executive function.
    Tari B; Heath M
    Behav Res Methods; 2022 Oct; 54(5):2398-2408. PubMed ID: 34918231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral blood flow and immediate and sustained executive function benefits following single bouts of passive and active exercise.
    Tari B; Ahn J; Dalton C; Young Choo S; Heath M
    Brain Cogn; 2023 Mar; 166():105953. PubMed ID: 36702069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise plus volume loading prevents orthostatic intolerance but not reduction in cerebral blood flow velocity after bed rest.
    Jeong SM; Shibata S; Levine BD; Zhang R
    Am J Physiol Heart Circ Physiol; 2012 Jan; 302(2):H489-97. PubMed ID: 22081705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise intensity-specific changes to cerebral blood velocity do not modulate a postexercise executive function benefit.
    Tari B; Shirzad M; Behboodpour N; Belfry GR; Heath M
    Neuropsychologia; 2021 Oct; 161():108018. PubMed ID: 34487738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute beetroot juice consumption does not alter cerebral autoregulation or cardiovagal baroreflex sensitivity during lower-body negative pressure in healthy adults.
    Worley ML; Reed EL; Chapman CL; Kueck P; Seymour L; Fitts T; Zazulak H; Schlader ZJ; Johnson BD
    Front Hum Neurosci; 2023; 17():1115355. PubMed ID: 36742355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral blood velocity regulation during progressive blood loss compared with lower body negative pressure in humans.
    Rickards CA; Johnson BD; Harvey RE; Convertino VA; Joyner MJ; Barnes JN
    J Appl Physiol (1985); 2015 Sep; 119(6):677-85. PubMed ID: 26139213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling between arterial pressure, cerebral blood velocity, and cerebral tissue oxygenation with spontaneous and forced oscillations.
    Rickards CA; Sprick JD; Colby HB; Kay VL; Tzeng YC
    Physiol Meas; 2015 Apr; 36(4):785-801. PubMed ID: 25798890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.