These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 39012596)

  • 21. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases.
    Lin L; Liu Y; Xu F; Huang J; Daugaard TF; Petersen TS; Hansen B; Ye L; Zhou Q; Fang F; Yang L; Li S; Fløe L; Jensen KT; Shrock E; Chen F; Yang H; Wang J; Liu X; Xu X; Bolund L; Nielsen AL; Luo Y
    Gigascience; 2018 Mar; 7(3):1-19. PubMed ID: 29635374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Harnessing CRISPR-Cas9 for Epigenetic Engineering.
    Guerra-Resendez RS; Hilton IB
    Methods Mol Biol; 2022; 2518():237-251. PubMed ID: 35666449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner.
    O'Geen H; Bates SL; Carter SS; Nisson KA; Halmai J; Fink KD; Rhie SK; Farnham PJ; Segal DJ
    Epigenetics Chromatin; 2019 May; 12(1):26. PubMed ID: 31053162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correction of aberrant imprinting by allele-specific epigenome editing.
    Bashtrykov P; Kungulovski G; Jeltsch A
    Clin Pharmacol Ther; 2016 May; 99(5):482-4. PubMed ID: 26537177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing.
    O'Geen H; Tomkova M; Combs JA; Tilley EK; Segal DJ
    Nucleic Acids Res; 2022 Apr; 50(6):3239-3253. PubMed ID: 35234927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I; Chaturvedi A; Chitkara D; Singh S
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Editing the Epigenome to Tackle Brain Disorders.
    Liu XS; Jaenisch R
    Trends Neurosci; 2019 Dec; 42(12):861-870. PubMed ID: 31706628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Precise epigenomic editing with a SunTag-based modular epigenetic toolkit.
    Guhathakurta S; Adams L; Jeong I; Sivakumar A; Cha M; Bernardo Fiadeiro M; Hu HN; Kim YS
    Epigenetics; 2022 Dec; 17(13):2075-2081. PubMed ID: 35920441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic Targeting of TET Activity for Targeted Demethylation Using CRISPR/Cas9.
    Nguyen TV; Lister R
    Methods Mol Biol; 2021; 2272():181-194. PubMed ID: 34009614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression.
    Seem K; Kaur S; Kumar S; Mohapatra T
    Crit Rev Biochem Mol Biol; 2024; 59(1-2):69-98. PubMed ID: 38440883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epigenome Editing in the Brain.
    Bashtrykov P; Jeltsch A
    Adv Exp Med Biol; 2017; 978():409-424. PubMed ID: 28523558
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Liang F; Dong Z; Ye J; Hu W; Bhandari RK; Mai K; Wang X
    Epigenetics; 2023 Dec; 18(1):2192326. PubMed ID: 36945831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects.
    Rahman MM; Tollefsbol TO
    Methods; 2021 Mar; 187():77-91. PubMed ID: 32315755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances of epigenetic editing.
    Gjaltema RAF; Rots MG
    Curr Opin Chem Biol; 2020 Aug; 57():75-81. PubMed ID: 32619853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversing Mechanoinductive DSP Expression by CRISPR/dCas9-mediated Epigenome Editing.
    Qu J; Zhu L; Zhou Z; Chen P; Liu S; Locy ML; Thannickal VJ; Zhou Y
    Am J Respir Crit Care Med; 2018 Sep; 198(5):599-609. PubMed ID: 29924937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of Epigenetic Disease Model Mice by Targeted Demethylation of the Epigenome.
    Horii T; Morita S; Hatada I
    Methods Mol Biol; 2023; 2577():255-268. PubMed ID: 36173579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-based epigenome editing: mechanisms and applications.
    Fadul SM; Arshad A; Mehmood R
    Epigenomics; 2023 Nov; 15(21):1137-1155. PubMed ID: 37990877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fine-Tuning the Epigenetic Landscape: Chemical Modulation of Epigenome Editors.
    Noviello G; Gjaltema RAF
    Methods Mol Biol; 2024; 2842():57-77. PubMed ID: 39012590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Successful generation of epigenetic disease model mice by targeted demethylation of the epigenome.
    Horii T; Morita S; Hino S; Kimura M; Hino Y; Kogo H; Nakao M; Hatada I
    Genome Biol; 2020 Apr; 21(1):77. PubMed ID: 32234052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted DNA demethylation of the Fgf21 promoter by CRISPR/dCas9-mediated epigenome editing.
    Hanzawa N; Hashimoto K; Yuan X; Kawahori K; Tsujimoto K; Hamaguchi M; Tanaka T; Nagaoka Y; Nishina H; Morita S; Hatada I; Yamada T; Ogawa Y
    Sci Rep; 2020 Mar; 10(1):5181. PubMed ID: 32198422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.