These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618 [TBL] [Abstract][Full Text] [Related]
24. Domain generalization for retinal vessel segmentation via Hessian-based vector field. Hu D; Li H; Liu H; Oguz I Med Image Anal; 2024 Jul; 95():103164. PubMed ID: 38615431 [TBL] [Abstract][Full Text] [Related]
25. Skin Cancer Segmentation and Classification Using Vision Transformer for Automatic Analysis in Dermatoscopy-Based Noninvasive Digital System. Himel GMS; Islam MM; Al-Aff KA; Karim SI; Sikder MKU Int J Biomed Imaging; 2024; 2024():3022192. PubMed ID: 38344227 [TBL] [Abstract][Full Text] [Related]
26. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading. Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290 [TBL] [Abstract][Full Text] [Related]
27. Structure-Oriented Transformer for retinal diseases grading from OCT images. Shen J; Hu Y; Zhang X; Gong Y; Kawasaki R; Liu J Comput Biol Med; 2023 Jan; 152():106445. PubMed ID: 36549031 [TBL] [Abstract][Full Text] [Related]
28. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation. Wu H; Chen S; Chen G; Wang W; Lei B; Wen Z Med Image Anal; 2022 Feb; 76():102327. PubMed ID: 34923250 [TBL] [Abstract][Full Text] [Related]
29. Interpretability-Based Multimodal Convolutional Neural Networks for Skin Lesion Diagnosis. Wang S; Yin Y; Wang D; Wang Y; Jin Y IEEE Trans Cybern; 2022 Dec; 52(12):12623-12637. PubMed ID: 34546933 [TBL] [Abstract][Full Text] [Related]
30. Factorizer: A scalable interpretable approach to context modeling for medical image segmentation. Ashtari P; Sima DM; De Lathauwer L; Sappey-Marinier D; Maes F; Van Huffel S Med Image Anal; 2023 Feb; 84():102706. PubMed ID: 36516557 [TBL] [Abstract][Full Text] [Related]
31. Enhancing Retinal Fundus Image Quality Assessment With Swin-Transformer-Based Learning Across Multiple Color-Spaces. Huang C; Jiang Y; Yang X; Wei C; Chen H; Xiong W; Lin H; Wang X; Tian T; Tan H Transl Vis Sci Technol; 2024 Apr; 13(4):8. PubMed ID: 38568606 [TBL] [Abstract][Full Text] [Related]
32. A multi-task learning model for clinically interpretable sesamoiditis grading. Guo L; Tahir AM; Hore M; Collins A; Rideout A; Wang ZJ Comput Biol Med; 2024 Sep; 182():109179. PubMed ID: 39326263 [TBL] [Abstract][Full Text] [Related]
33. MGRW-Transformer: Multigranularity Random Walk Transformer Model for Interpretable Learning. Ding W; Geng Y; Huang J; Ju H; Wang H; Lin CT IEEE Trans Neural Netw Learn Syst; 2023 Nov; PP():. PubMed ID: 37938954 [TBL] [Abstract][Full Text] [Related]
34. TDCAU-Net: retinal vessel segmentation using transformer dilated convolutional attention-based U-Net method. Li C; Li Z; Liu W Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38052089 [TBL] [Abstract][Full Text] [Related]
35. COVID-Net Biochem: an explainability-driven framework to building machine learning models for predicting survival and kidney injury of COVID-19 patients from clinical and biochemistry data. Aboutalebi H; Pavlova M; Shafiee MJ; Florea A; Hryniowski A; Wong A Sci Rep; 2023 Oct; 13(1):17001. PubMed ID: 37813920 [TBL] [Abstract][Full Text] [Related]
36. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation. Wu Y; Keoliya M; Chen K; Velingker N; Li Z; Getzen EJ; Long Q; Naik M; Parikh RB; Wong E Proc Mach Learn Res; 2024 Jul; 235():53597-53618. PubMed ID: 39205826 [TBL] [Abstract][Full Text] [Related]
37. MBT: Model-Based Transformer for retinal optical coherence tomography image and video multi-classification. Ait Hammou B; Antaki F; Boucher MC; Duval R Int J Med Inform; 2023 Oct; 178():105178. PubMed ID: 37657204 [TBL] [Abstract][Full Text] [Related]
38. Identify diabetic retinopathy-related clinical concepts and their attributes using transformer-based natural language processing methods. Yu Z; Yang X; Sweeting GL; Ma Y; Stolte SE; Fang R; Wu Y BMC Med Inform Decis Mak; 2022 Sep; 22(Suppl 3):255. PubMed ID: 36167551 [TBL] [Abstract][Full Text] [Related]
39. PolypMixNet: Enhancing semi-supervised polyp segmentation with polyp-aware augmentation. Jia X; Shen Y; Yang J; Song R; Zhang W; Meng MQ; Liao JC; Xing L Comput Biol Med; 2024 Mar; 170():108006. PubMed ID: 38325216 [TBL] [Abstract][Full Text] [Related]
40. Interpretability Is in the Mind of the Beholder: A Causal Framework for Human-Interpretable Representation Learning. Marconato E; Passerini A; Teso S Entropy (Basel); 2023 Nov; 25(12):. PubMed ID: 38136454 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]