These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39012735)

  • 1. Active Neural Network Control for a Wearable Upper Limb Rehabilitation Exoskeleton Robot Driven by Pneumatic Artificial Muscles.
    Zhang H; Fan J; Qin Y; Tian M; Han J
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2589-2597. PubMed ID: 39012735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation].
    Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural PID Control of Robot Manipulators With Application to an Upper Limb Exoskeleton.
    Yu W; Rosen J
    IEEE Trans Cybern; 2013 Apr; 43(2):673-84. PubMed ID: 23033432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton.
    Han S; Wang H; Tian Y; Christov N
    ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechatronics design and testing of a cable-driven upper limb rehabilitation exoskeleton with variable stiffness.
    Li Z; Li W; Chen WH; Zhang J; Wang J; Fang Z; Yang G
    Rev Sci Instrum; 2021 Feb; 92(2):024101. PubMed ID: 33648137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Continuous Integral-Sliding-Mode Controller for Wearable Robots: Application to an Upper Limb Exoskeleton.
    Jebri A; Madani T; Djouani K
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():766-771. PubMed ID: 31374723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glenohumeral joint trajectory tracking for improving the shoulder compliance of the upper limb rehabilitation robot.
    Tang Y; Hao D; Cao C; Shi P; Yu H; Luan X; Fang F
    Med Eng Phys; 2023 Mar; 113():103961. PubMed ID: 36966005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
    Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J
    Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse kinematic analysis and trajectory planning of a modular upper limb rehabilitation exoskeleton.
    Li G; Fang Q; Xu T; Zhao J; Cai H; Zhu Y
    Technol Health Care; 2019; 27(S1):123-132. PubMed ID: 31045532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer.
    Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A
    ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton.
    Wang W; He Y; Li F; Li J; Liu J; Wu X
    Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Pneumatic Exoskeleton Robot for Lower Limb Rehabilitation.
    Goergen R; Valdiero AC; Rasia LA; Oberdorfer M; de Souza JP; Goncalves RS
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():187-192. PubMed ID: 31374628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Intelligence-Based Wearable Robotic Exoskeletons for Upper Limb Rehabilitation: A Review.
    VĂ©lez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A passively safe cable driven upper limb rehabilitation exoskeleton.
    Chen Y; Fan J; Zhu Y; Zhao J; Cai H
    Technol Health Care; 2015; 23 Suppl 2():S197-202. PubMed ID: 26410484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.