These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 39012885)

  • 1. Optimal dispatching of regional power grid considering vehicle network interaction.
    Hua Y; Wang S; Wang Y; Zhang L; Liu W
    PLoS One; 2024; 19(7):e0297855. PubMed ID: 39012885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal scheduling strategy of electric vehicle based on improved NSGA-III algorithm.
    Wu Y; Yan D; Yang JM; Wang AP; Feng D
    PLoS One; 2024; 19(5):e0298572. PubMed ID: 38758947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized operation strategy for energy storage charging piles based on multi-strategy hybrid improved Harris hawk algorithm.
    Tang B; Shiting C; Wang X; Yuan C; Zhu R
    Heliyon; 2024 May; 10(10):e31525. PubMed ID: 38818159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DSM and Optimization of Multihop Smart Grid Based on Genetic Algorithm.
    Zhu Q; Li Y; Song J
    Comput Intell Neurosci; 2022; 2022():5354326. PubMed ID: 35720941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-objective economic emission dispatch of thermal power-electric vehicles considering user's revenue.
    Qiao B; Liu J; Huan J
    Soft comput; 2022; 26(22):12833-12849. PubMed ID: 35966349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Reinforcement Learning for Charging Scheduling of Electric Vehicles Considering Distribution Network Voltage Stability.
    Liu D; Zeng P; Cui S; Song C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of scheduling scheme for self-driving vehicles by simulation algorithm.
    Jianqiao X
    Sci Prog; 2023; 106(3):368504231188617. PubMed ID: 37491947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart Scheduling of Electric Vehicles Based on Reinforcement Learning.
    Viziteu A; Furtună D; Robu A; Senocico S; Cioată P; Remus Baltariu M; Filote C; Răboacă MS
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid distributed finite-time neurodynamic optimization of electric vehicle charging schemes management in microgrid considering time-varying factors.
    Qin H; Zhao G; Li Y; Wang H
    Neural Netw; 2023 Apr; 161():466-475. PubMed ID: 36805262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative operation strategy of electric vehicle and photovoltaic power station considering carbon reduction benefit under dynamic electricity price.
    Guo D; Li J; Zhang S; Liu R; Sun F; Zhang H; Ma P; Li J
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):92922-92936. PubMed ID: 37501026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive evaluation of electric vehicle charging network under the coupling of traffic network and power grid.
    He L; He J; Zhu L; Huang W; Wang Y; Yu H
    PLoS One; 2022; 17(9):e0275231. PubMed ID: 36149930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of critical peak electricity price optimization model considering coal consumption rate of power generation side.
    Yu X; Dong Z; Zheng D; Deng S
    Environ Sci Pollut Res Int; 2024 Jun; 31(29):41514-41528. PubMed ID: 37723393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted optimal-path problem for electric vehicles with connected charging stations.
    Fu F; Dong H
    PLoS One; 2019; 14(8):e0220361. PubMed ID: 31454350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.
    Milanés-Montero MI; Gallardo-Lozano J; Romero-Cadaval E; González-Romera E
    Sensors (Basel); 2011; 11(10):9313-26. PubMed ID: 22163697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal number of charging station and pricing strategy for the electric vehicle with component commonality considering consumer range anxiety.
    Yu W; Zhang L; Lu R; Ma J
    PLoS One; 2023; 18(5):e0283320. PubMed ID: 37155615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading.
    Liao W; Liu L; Fu J
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31461949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-stage battery recharge scheduling and vehicle-charger assignment policy for dynamic electric dial-a-ride services.
    Ma TY
    PLoS One; 2021; 16(5):e0251582. PubMed ID: 34014951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Reinforcement Learning Microgrid Optimization Strategy Considering Priority Flexible Demand Side.
    Sang J; Sun H; Kou L
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter optimization of shared electric vehicle dispatching model using discrete Harris hawks optimization.
    Wang Y; Zhou Y; Luo Q
    Math Biosci Eng; 2022 May; 19(7):7284-7313. PubMed ID: 35730307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric vehicle routing models and solution algorithms in logistics distribution: A systematic review.
    Ye C; He W; Chen H
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57067-57090. PubMed ID: 35752674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.