These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 39013438)

  • 1. Near-Term Quantum Classification Algorithms Applied to Antimalarial Drug Discovery.
    Dorsey MA; Dsouza K; Ranganath D; Harris JS; Lane TR; Urbina F; Ekins S
    J Chem Inf Model; 2024 Aug; 64(15):5922-5930. PubMed ID: 39013438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Machine Learning Algorithms for Drug Discovery Applications.
    Batra K; Zorn KM; Foil DH; Minerali E; Gawriljuk VO; Lane TR; Ekins S
    J Chem Inf Model; 2021 Jun; 61(6):2641-2647. PubMed ID: 34032436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach.
    Egieyeh S; Syce J; Malan SF; Christoffels A
    PLoS One; 2018; 13(9):e0204644. PubMed ID: 30265702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IFPTML Mapping of Drug Graphs with Protein and Chromosome Structural Networks vs. Pre-Clinical Assay Information for Discovery of Antimalarial Compounds.
    Quevedo-Tumailli V; Ortega-Tenezaca B; González-Díaz H
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CAPi: Computational Model for Apicoplast Inhibitors Prediction Against Plasmodium Parasite.
    Dixit S; Singla D
    Curr Comput Aided Drug Des; 2017 Nov; 13(4):303-310. PubMed ID: 28260517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments.
    Zwolak JP; Kalantre SS; Wu X; Ragole S; Taylor JM
    PLoS One; 2018; 13(10):e0205844. PubMed ID: 30332463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Machine Learning Predicting ADME-Tox Properties in Drug Discovery.
    Bhatia AS; Saggi MK; Kais S
    J Chem Inf Model; 2023 Nov; 63(21):6476-6486. PubMed ID: 37603536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic review on the application of machine learning to quantitative structure-activity relationship modeling against Plasmodium falciparum.
    Oguike OE; Ugwuishiwu CH; Asogwa CN; Nnadi CO; Obonga WO; Attama AA
    Mol Divers; 2022 Dec; 26(6):3447-3462. PubMed ID: 35064444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and rigorous validation of antimalarial predictive models using machine learning approaches.
    Danishuddin ; Madhukar G; Malik MZ; Subbarao N
    SAR QSAR Environ Res; 2019 Aug; 30(8):543-560. PubMed ID: 31328578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New horizons in antimalarial drug discovery in the last decade by chemoinformatic approaches.
    Ambre PK; Wavhale RD; Coutinho EC
    Comb Chem High Throughput Screen; 2015; 18(2):129-50. PubMed ID: 25543682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimalarial Drug Predictions Using Molecular Descriptors and Machine Learning against Plasmodium Falciparum.
    Mswahili ME; Martin GL; Woo J; Choi GJ; Jeong YS
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity.
    Wicht KJ; Combrinck JM; Smith PJ; Egan TJ
    Bioorg Med Chem; 2015 Aug; 23(16):5210-7. PubMed ID: 25573118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of some existing QML frameworks and novel hybrid classical-quantum neural networks realising binary classification for the noisy datasets.
    Schetakis N; Aghamalyan D; Griffin P; Boguslavsky M
    Sci Rep; 2022 Jul; 12(1):11927. PubMed ID: 35831369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shared Consensus Machine Learning Models for Predicting Blood Stage Malaria Inhibition.
    Verras A; Waller CL; Gedeck P; Green DV; Kogej T; Raichurkar A; Panda M; Shelat AA; Clark J; Guy RK; Papadatos G; Burrows J
    J Chem Inf Model; 2017 Mar; 57(3):445-453. PubMed ID: 28257198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Methods in Drug Discovery.
    Patel L; Shukla T; Huang X; Ussery DW; Wang S
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33198233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical data classification with noisy intermediate scale quantum computers.
    Moradi S; Brandner C; Spielvogel C; Krajnc D; Hillmich S; Wille R; Drexler W; Papp L
    Sci Rep; 2022 Feb; 12(1):1851. PubMed ID: 35115630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.