These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39013505)

  • 1. Carrier-free immobilized enzymatic reactor based on CipA-fused carbonyl reductase for efficient synthesis of chiral alcohol with cofactor self-sufficiency.
    Wang YW; Liu HY; Duan ZW; Ning P; Zhang HM; Qian F; Wang P
    Int J Biol Macromol; 2024 Sep; 276(Pt 1):133873. PubMed ID: 39013505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning, expression, and directed evolution of carbonyl reductase from Leifsonia xyli HS0904 with enhanced catalytic efficiency.
    Wang NQ; Sun J; Huang J; Wang P
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8591-601. PubMed ID: 24788330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an Efficient and Cost-Effective Enzymatic Process for Production of (R)-[3,5-bis(trifluoromethyl)phenyl] Ethanol Using Carbonyl Reductase Derived from Leifsonia sp. S749.
    Tang J; Wei T; Ni G; Guo X; Wu Y; Zhang F; Chen S
    Appl Biochem Biotechnol; 2019 May; 188(1):87-100. PubMed ID: 30341711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of the S154Y mutant carbonyl reductase from Leifsonia xyli explains enhanced activity for 3,5-bis(trifluoromethyl)acetophenone reduction.
    Li J; Dinh T; Phillips R
    Arch Biochem Biophys; 2022 May; 720():109158. PubMed ID: 35247363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol.
    Chen K; Li K; Deng J; Zhang B; Lin J; Wei D
    Microb Cell Fact; 2016 Nov; 15(1):191. PubMed ID: 27835967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using a self-sufficient biocatalyst based on carbonyl reductase and cofactor co-immobilization.
    Zhang XJ; Wang WZ; Zhou R; Liu ZQ; Zheng YG
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):21-31. PubMed ID: 31542820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in aldo-keto reductases immobilization for biocatalytic synthesis of chiral alcohols.
    Zhang W; Shao ZQ; Wang ZX; Ye YF; Li SF; Wang YJ
    Int J Biol Macromol; 2024 Aug; 274(Pt 1):133264. PubMed ID: 38901517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic Synthesis of (S)-CHBE by Directional Coupling and Immobilization of Carbonyl Reductase and Glucose Dehydrogenase.
    Wang Y; Sun R; Chen P; Wang F
    Biomolecules; 2024 Apr; 14(4):. PubMed ID: 38672520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient biocatalytic synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by a newly isolated Trichoderma asperellum ZJPH0810 using dual cosubstrate: ethanol and glycerol.
    Li J; Wang P; He JY; Huang J; Tang J
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6685-92. PubMed ID: 23700239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel bioreduction system for the production of chiral alcohols.
    Kataoka M; Kita K; Wada M; Yasohara Y; Hasegawa J; Shimizu S
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):437-45. PubMed ID: 12838375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient enantioselective synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by Leifsonia xyli CCTCC M 2010241 using isopropanol as co-substrate.
    Ouyang Q; Wang P; Huang J; Cai J; He J
    J Microbiol Biotechnol; 2013 Mar; 23(3):343-50. PubMed ID: 23462007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconversion of xylose to xylonic acid via co-immobilized dehydrogenases for conjunct cofactor regeneration.
    Bachosz K; Synoradzki K; Staszak M; Pinelo M; Meyer AS; Zdarta J; Jesionowski T
    Bioorg Chem; 2019 Dec; 93():102747. PubMed ID: 30739714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of Ogataea thermomethanolica alcohol oxidase immobilized on barium ferrite magnetic microparticles.
    Mangkorn N; Kanokratana P; Roongsawang N; Laobuthee A; Laosiripojana N; Champreda V
    J Biosci Bioeng; 2019 Mar; 127(3):265-272. PubMed ID: 30243531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a newly isolated Rhodotorula mucilaginosa NQ1 and its development for the synthesis of bulky carbonyl compounds by whole-cell bioreduction.
    Wang N; Xu Y; Peng C; Wang X; Wei Y; Li K; Wang S; Xu A; Gao J
    Lett Appl Microbiol; 2021 Apr; 72(4):399-407. PubMed ID: 33217003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Reduction of Prochiral Ketones by Using Self-Sufficient Heterogeneous Biocatalysts Based on NADPH-Dependent Ketoreductases.
    Benítez-Mateos AI; San Sebastian E; Ríos-Lombardía N; Morís F; González-Sabín J; López-Gallego F
    Chemistry; 2017 Nov; 23(66):16843-16852. PubMed ID: 28940802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a newly isolated Sphingomonas sp. LZ1 and its application to biosynthesize chiral alcohols.
    Wang N; Luo Z; Li K; Xu Y; Peng C
    J Gen Appl Microbiol; 2020 Nov; 66(5):289-296. PubMed ID: 32741888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiently Enantioselective Hydrogenation Photosynthesis of (
    Yin Y; Wang R; Zhang J; Luo Z; Xiao Q; Xie T; Pei X; Gao P; Wang A
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41454-41463. PubMed ID: 34431298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of optically pure chiral alcohols by a substrate coupled and biphasic system with a short-chain dehydrogenase from Streptomyces griseus.
    Tan Z; Ma H; Li Q; Pu L; Cao Y; Qu X; Zhu C; Ying H
    Enzyme Microb Technol; 2016 Nov; 93-94():191-199. PubMed ID: 27702481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-immobilized Phosphorylated Cofactors and Enzymes as Self-Sufficient Heterogeneous Biocatalysts for Chemical Processes.
    Velasco-Lozano S; Benítez-Mateos AI; López-Gallego F
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):771-775. PubMed ID: 28000978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD
    Xu MQ; Li FL; Yu WQ; Li RF; Zhang YW
    Int J Biol Macromol; 2020 Feb; 144():1013-1021. PubMed ID: 31669469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.