These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 39014018)

  • 1. Continuous blood pressure prediction system using Conv-LSTM network on hybrid latent features of photoplethysmogram (PPG) and electrocardiogram (ECG) signals.
    Kamanditya B; Fuadah YN; Mahardika T NQ; Lim KM
    Sci Rep; 2024 Jul; 14(1):16450. PubMed ID: 39014018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms.
    Baker S; Xiang W; Atkinson I
    Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections.
    Lai K; Wang X; Cao C
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid CNN-SVR Blood Pressure Estimation Model Using ECG and PPG Signals.
    Rastegar S; Gholam Hosseini H; Lowe A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Phys Eng Sci Med; 2023 Dec; 46(4):1589-1605. PubMed ID: 37747644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined deep CNN-LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features.
    Jeong DU; Lim KM
    Sci Rep; 2021 Jun; 11(1):13539. PubMed ID: 34188132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration-free blood pressure estimation based on a convolutional neural network.
    Cho J; Shin H; Choi A
    Psychophysiology; 2024 Apr; 61(4):e14480. PubMed ID: 37971153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach.
    Leitner J; Chiang PH; Dey S
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):218-228. PubMed ID: 34077378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model.
    Li YH; Harfiya LN; Purwandari K; Lin YD
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33007891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning method for continuous noninvasive blood pressure monitoring using photoplethysmography.
    Liang H; He W; Xu Z
    Physiol Meas; 2023 May; 44(5):. PubMed ID: 37116508
    [No Abstract]   [Full Text] [Related]  

  • 16. A Novel CNN-LSTM Model Based Non-Invasive Cuff-Less Blood Pressure Estimation System.
    Nandi P; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():832-836. PubMed ID: 36086017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals.
    Mahmud S; Ibtehaz N; Khandakar A; Tahir AM; Rahman T; Islam KR; Hossain MS; Rahman MS; Musharavati F; Ayari MA; Islam MT; Chowdhury MEH
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN-LSTM.
    Mahardika T NQ; Fuadah YN; Jeong DU; Lim KM
    Diagnostics (Basel); 2023 Aug; 13(15):. PubMed ID: 37568929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation.
    Zhou Y; Tan Z; Liu Y; Cheng H
    Physiol Meas; 2023 Sep; 44(7):. PubMed ID: 37402386
    [No Abstract]   [Full Text] [Related]  

  • 20. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.