These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 39014927)

  • 1. Efficient production of 22(R)-hydroxycholesterol via combination optimization of Saccharomyces cerevisiae.
    Pang Y; Cheng X; Ban Y; Li Y; Lv B; Li C
    Biotechnol J; 2024 Jul; 19(7):e2400286. PubMed ID: 39014927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of
    Yang J; Li C; Zhang Y
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae.
    Zhu P; Luo R; Li Y; Chen X
    Microbiol Spectr; 2022 Dec; 10(6):e0227722. PubMed ID: 36354322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering
    Wang J; Li Y; Jiang W; Hu J; Gu Z; Xu S; Zhang L; Ding Z; Chen W; Shi G
    J Agric Food Chem; 2023 Jun; 71(25):9804-9814. PubMed ID: 37311098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae.
    Chai F; Wang Y; Mei X; Yao M; Chen Y; Liu H; Xiao W; Yuan Y
    Microb Cell Fact; 2017 Mar; 16(1):54. PubMed ID: 28356104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High production of valencene in Saccharomyces cerevisiae through metabolic engineering.
    Chen H; Zhu C; Zhu M; Xiong J; Ma H; Zhuo M; Li S
    Microb Cell Fact; 2019 Nov; 18(1):195. PubMed ID: 31699116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-titer production of 13R-manoyl oxide in metabolically engineered Saccharomyces cerevisiae.
    Zhang C; Ju H; Lu CZ; Zhao F; Liu J; Guo X; Wu Y; Zhao GR; Lu W
    Microb Cell Fact; 2019 Apr; 18(1):73. PubMed ID: 31018856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Level Production of Hydroxytyrosol in Engineered
    Liu H; Wu X; Ma H; Li J; Liu Z; Guo X; Dong J; Zou S; Luo Y
    ACS Synth Biol; 2022 Nov; 11(11):3706-3713. PubMed ID: 36345886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial Metabolic Engineering for Improving Betulinic Acid Biosynthesis in
    Tang M; Xu X; Liu Y; Li J; Du G; Lv X; Liu L
    ACS Synth Biol; 2024 Jun; 13(6):1798-1808. PubMed ID: 38748665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Saccharomyces cerevisiae for high-level production of (+)-ambrein from glucose.
    Lin C; Zhang X; Ji Z; Fan B; Chen Y; Wu Y; Gan Y; Li Z; Shang Y; Duan L; Wang F
    Biotechnol Lett; 2024 Aug; 46(4):615-626. PubMed ID: 38884886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae.
    Liu T; Sun L; Zhang C; Liu Y; Li J; Du G; Lv X; Liu L
    Bioresour Technol; 2023 Jul; 379():129023. PubMed ID: 37028528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.
    Duan L; Ding W; Liu X; Cheng X; Cai J; Hua E; Jiang H
    Microb Cell Fact; 2017 Sep; 16(1):165. PubMed ID: 28950867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving heterologous production of phenylpropanoids in Saccharomyces cerevisiae by tackling an unwanted side reaction of Tsc13, an endogenous double-bond reductase.
    Lehka BJ; Eichenberger M; Bjørn-Yoshimoto WE; Vanegas KG; Buijs N; Jensen NB; Dyekjær JD; Jenssen H; Simon E; Naesby M
    FEMS Yeast Res; 2017 Jan; 17(1):. PubMed ID: 28073929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Engineering of
    Guo J; Sun X; Yuan Y; Chen Q; Ou Z; Deng Z; Ma T; Liu T
    J Agric Food Chem; 2023 May; 71(19):7408-7417. PubMed ID: 37154424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered yeast for efficient de novo synthesis of 7-dehydrocholesterol.
    Qu L; Xiu X; Sun G; Zhang C; Yang H; Liu Y; Li J; Du G; Lv X; Liu L
    Biotechnol Bioeng; 2022 May; 119(5):1278-1289. PubMed ID: 35128633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De Novo High-Titer Production of Delta-Tocotrienol in Recombinant
    Sun H; Yang J; Lin X; Li C; He Y; Cai Z; Zhang G; Song H
    J Agric Food Chem; 2020 Jul; 68(29):7710-7717. PubMed ID: 32580548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway.
    Sakuragi H; Morisaka H; Kuroda K; Ueda M
    Biosci Biotechnol Biochem; 2015; 79(2):314-20. PubMed ID: 25348391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose.
    Guo W; Sheng J; Zhao H; Feng X
    Microb Cell Fact; 2016 Feb; 15():24. PubMed ID: 26830023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic Metabolic Engineering of
    Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T
    J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.