These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 39014928)

  • 1. Development of a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in Fusarium fujikuroi.
    Huang L; Li N; Song Y; Gao J; Nian L; Zhou J; Zhang B; Liu Z; Zheng Y
    Biotechnol J; 2024 Jul; 19(7):e2400164. PubMed ID: 39014928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-Based Genome Editing in the Filamentous Fungus Fusarium fujikuroi and Its Application in Strain Engineering for Gibberellic Acid Production.
    Shi TQ; Gao J; Wang WJ; Wang KF; Xu GQ; Huang H; Ji XJ
    ACS Synth Biol; 2019 Feb; 8(2):445-454. PubMed ID: 30616338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of a selectable marker recycling system for iterative gene editing in
    Shi TQ; Yang CL; Li DX; Wang YT; Nie ZK
    Synth Syst Biotechnol; 2024 Mar; 9(1):159-164. PubMed ID: 38333054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing using preassembled CRISPR-Cas9 ribonucleoprotein complexes in Fusarium graminearum.
    Lee N; Park J; Kim JE; Shin JY; Min K; Son H
    PLoS One; 2022; 17(6):e0268855. PubMed ID: 35657788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 7. Improved CRISPR/Cas9 Tools for the Rapid Metabolic Engineering of
    Wilding-Steele T; Ramette Q; Jacottin P; Soucaille P
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33918190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and marker-free gene replacement in citric acid-producing Aspergillus tubingensis (A. niger) WU-2223L by the CRISPR/Cas9 system-based genome editing technique using DNA fragments encoding sgRNAs.
    Yoshioka I; Kirimura K
    J Biosci Bioeng; 2021 Jun; 131(6):579-588. PubMed ID: 33612423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 13. Evasion of Cas9 toxicity to develop an efficient genome editing system and its application to increase ethanol yield in Fusarium venenatum TB01.
    Tong S; An K; Chen W; Zhou W; Sun Y; Wang Q; Li D
    Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6583-6593. PubMed ID: 36109386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 16. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 17. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review.
    Ebrahimi V; Hashemi A
    Gene; 2020 Aug; 753():144813. PubMed ID: 32470504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides.
    Schultz JC; Cao M; Zhao H
    Biotechnol Bioeng; 2019 Aug; 116(8):2103-2109. PubMed ID: 31038202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.
    Li H; Shen CR; Huang CH; Sung LY; Wu MY; Hu YC
    Metab Eng; 2016 Nov; 38():293-302. PubMed ID: 27693320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Portable CRISPR-Cas9
    Goh YJ; Barrangou R
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.