These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39015291)

  • 21. Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability.
    Omomowo OI; Babalola OO
    Front Plant Sci; 2021; 12():751731. PubMed ID: 34745184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First Report of Pestalotiopsis Species Causing Leaf Spot of Cowpea (Vigna unguiculata) in India.
    Mahadevakumar S; Janardhana GR
    Plant Dis; 2014 May; 98(5):686. PubMed ID: 30708519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV).
    Varela ALN; Komatsu S; Wang X; Silva RGG; Souza PFN; Lobo AKM; Vasconcelos IM; Silveira JAG; Oliveira JTA
    J Proteomics; 2017 Jun; 163():76-91. PubMed ID: 28502737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage.
    Olorunwa OJ; Adhikari B; Shi A; Barickman TC
    Plant Sci; 2022 Feb; 315():111136. PubMed ID: 35067306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The damage caused by Callosobruchus maculatus on cowpea grains is dependent on the plant genotype.
    Torres EB; Nóbrega RS; Fernandes-Júnior PI; Silva LB; Dos Santos Carvalho G; Marinho Rde C; Pavan BE
    J Sci Food Agric; 2016 Sep; 96(12):4276-80. PubMed ID: 26800228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selection of cowpea cultivars for high temperature tolerance: physiological, biochemical and yield aspects.
    Barros JRA; Guimarães MJM; Silva RME; Rêgo MTC; de Melo NF; de Melo Chaves AR; Angelotti F
    Physiol Mol Biol Plants; 2021 Jan; 27(1):29-38. PubMed ID: 33627960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic variability and resistance of cultivars of cowpea [Vigna unguiculata (L.) Walp] to cowpea weevil (Callosobruchus maculatus Fabr.).
    Vila Nova MX; Leite NG; Houllou LM; Medeiros LV; Lira Neto AC; Hsie BS; Borges-Paluch LR; Santos BS; Araujo CS; Rocha AA; Costa AF
    Genet Mol Res; 2014 Mar; 13(1):2323-32. PubMed ID: 24737480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress.
    Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V
    J Proteomics; 2017 Jun; 163():28-51. PubMed ID: 28511789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport.
    Challabathula D; Analin B; Mohanan A; Bakka K
    J Plant Physiol; 2022 Jan; 268():153583. PubMed ID: 34871988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined Effects of Ozone and Drought on the Physiology and Membrane Lipids of Two Cowpea (Vigna unguiculata (L.) Walp) Cultivars.
    Rebouças DM; De Sousa YM; Bagard M; Costa JH; Jolivet Y; De Melo DF; Repellin A
    Plants (Basel); 2017 Mar; 6(1):. PubMed ID: 28273829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing genotypic variability of cowpea (Vigna unguiculata [L.] Walp.) to current and projected ultraviolet-B radiation.
    Singh SK; Surabhi GK; Gao W; Reddy KR
    J Photochem Photobiol B; 2008 Nov; 93(2):71-81. PubMed ID: 18723366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of soybean tolerance to water stress through regulation of nitrogen and antioxidant defence mechanisms mediated by the synergistic role of salicylic acid and thiourea.
    Kaya C; Akin S; Sarioğlu A; Ashraf M; Alyemeni MN; Ahmad P
    Plant Physiol Biochem; 2024 Feb; 207():108320. PubMed ID: 38183901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance.
    El Maarouf H; Zuily-Fodil Y; Gareil M; d'Arcy-Lameta A; Pham-Thi AT
    Plant Mol Biol; 1999 Apr; 39(6):1257-65. PubMed ID: 10380811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A resistant cowpea (Vigna unguiculata [L.] Walp.) genotype became susceptible to cowpea severe mosaic virus (CPSMV) after exposure to salt stress.
    Varela ALN; Oliveira JTA; Komatsu S; Silva RGG; Martins TF; Souza PFN; Lobo AKM; Vasconcelos IM; Carvalho FEL; Silveira JAG
    J Proteomics; 2019 Mar; 194():200-217. PubMed ID: 30471437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the effects of 24-epibrassinolide and yeast extract at various levels on cowpea's morphophysiological and biochemical responses under water deficit stress.
    Gholami F; Amerian MR; Asghari HR; Ebrahimi A
    BMC Plant Biol; 2023 Nov; 23(1):593. PubMed ID: 38008746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers.
    Nkhoma N; Shimelis H; Laing MD; Shayanowako A; Mathew I
    BMC Genet; 2020 Sep; 21(1):110. PubMed ID: 32948123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L. Walp): enzymatic activity, gene expression and relation to drought susceptibility.
    Cruz de Carvalho MH; d'Arcy-Lameta A; Roy-Macauley H; Gareil M; El Maarouf H; Pham-Thi AT; Zuily-Fodil Y
    FEBS Lett; 2001 Mar; 492(3):242-6. PubMed ID: 11257502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Limiting-Stress-Elimination Hypothesis: Using Non-hormonal Biostimulant to Reduce Stress and Increase Savanna Cowpea [
    Atta-Boateng A; Berlyn GP
    Front Plant Sci; 2021; 12():732279. PubMed ID: 34490027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought.
    Zegaoui Z; Planchais S; Cabassa C; Djebbar R; Belbachir OA; Carol P
    J Plant Physiol; 2017 Nov; 218():26-34. PubMed ID: 28763706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selection of cowpea progenies with enhanced drought-tolerance traits using principal component analysis.
    Sousa CC; Damasceno-Silva KJ; Bastos EA; Rocha MM
    Genet Mol Res; 2015 Dec; 14(4):15981-7. PubMed ID: 26662390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.