These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39016613)

  • 41. Correlating Optical Microspectroscopy with 4×4 Transfer Matrix Modeling for Characterizing Birefringent Van der Waals Materials.
    Schwarz J; Niebauer M; Koleśnik-Gray M; Szabo M; Baier L; Chava P; Erbe A; Krstić V; Rommel M; Hutzler A
    Small Methods; 2023 Oct; 7(10):e2300618. PubMed ID: 37462245
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strong room-temperature ferromagnetism in VSe
    Bonilla M; Kolekar S; Ma Y; Diaz HC; Kalappattil V; Das R; Eggers T; Gutierrez HR; Phan MH; Batzill M
    Nat Nanotechnol; 2018 Apr; 13(4):289-293. PubMed ID: 29459653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. First-principles investigations on a two-dimensional S
    Li J; Wang YP; Zhang S; Duan H; Long M
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315134
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Noncollinear magnetism in two-dimensional CrTe
    Abuawwad N; Dos Santos Dias M; Abusara H; Lounis S
    J Phys Condens Matter; 2022 Sep; 34(45):. PubMed ID: 36055232
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 2D van der Waals materials for ultrafast pulsed fiber lasers: review and prospect.
    Zhang YN; Song ZY; Qiao D; Li XH; Guang Z; Li SP; Zhou LB; Chen XH
    Nanotechnology; 2021 Dec; 33(8):. PubMed ID: 34731847
    [TBL] [Abstract][Full Text] [Related]  

  • 46. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations.
    Björkman T; Gulans A; Krasheninnikov AV; Nieminen RM
    Phys Rev Lett; 2012 Jun; 108(23):235502. PubMed ID: 23003970
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optoelectronic properties and applications of two-dimensional layered semiconductor van der Waals heterostructures: perspective from theory.
    Li X; Yuan P; He M; Li L; Du J; Xiong W; Xia C; Kou L
    J Phys Condens Matter; 2022 Dec; 35(4):. PubMed ID: 36541492
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetic State Control of Non-van der Waals 2D Materials by Hydrogenation.
    Barnowsky T; Curtarolo S; Krasheninnikov AV; Heine T; Friedrich R
    Nano Lett; 2024 Apr; 24(13):3874-3881. PubMed ID: 38446590
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thickness-Insensitive Properties of α-MoO
    Kim JH; Hyun C; Kim H; Dash JK; Ihm K; Lee GH
    Nano Lett; 2019 Dec; 19(12):8868-8876. PubMed ID: 31702164
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atomistic modeling of tribological properties of Pd and Al nanoparticles on a graphene surface.
    Khomenko A; Zakharov M; Boyko D; Persson BNJ
    Beilstein J Nanotechnol; 2018; 9():1239-1246. PubMed ID: 29765801
    [No Abstract]   [Full Text] [Related]  

  • 51. Controlled Synthesis of a Two-Dimensional Non-van der Waals Ferromagnet toward a Magnetic Moiré Superlattice.
    Jin Z; Ji Z; Zhong Y; Jin Y; Hu X; Zhang X; Zhu L; Huang X; Li T; Cai X; Zhou L
    ACS Nano; 2022 May; 16(5):7572-7579. PubMed ID: 35443128
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detachment of compliant films adhered to stiff substrates via van der Waals interactions: role of frictional sliding during peeling.
    Collino RR; Philips NR; Rossol MN; McMeeking RM; Begley MR
    J R Soc Interface; 2014 Aug; 11(97):20140453. PubMed ID: 24920120
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering Dielectric Screening for Potential-well Arrays of Excitons in 2D Materials.
    Peimyoo N; Wu HY; Escolar J; De Sanctis A; Prando G; Vollmer F; Withers F; Riis-Jensen AC; Craciun MF; Thygesen KS; Russo S
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55134-55140. PubMed ID: 33232104
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 2D materials and van der Waals heterostructures.
    Novoselov KS; Mishchenko A; Carvalho A; Castro Neto AH
    Science; 2016 Jul; 353(6298):aac9439. PubMed ID: 27471306
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Emerging 2D Materials and Their Van Der Waals Heterostructures.
    Di Bartolomeo A
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32235754
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New Assembly-Free Bulk Layered Inorganic Vertical Heterostructures with Infrared and Optical Bandgaps.
    Antoniuk ER; Cheon G; Krishnapriyan A; Rehn DA; Zhou Y; Reed EJ
    Nano Lett; 2019 Jan; 19(1):142-149. PubMed ID: 30525679
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Strain Switching in van der Waals Heterostructures Triggered by a Spin-Crossover Metal-Organic Framework.
    Boix-Constant C; García-López V; Navarro-Moratalla E; Clemente-León M; Zafra JL; Casado J; Guinea F; Mañas-Valero S; Coronado E
    Adv Mater; 2022 Mar; 34(11):e2110027. PubMed ID: 35032055
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental Decoding and Tuning Electronic Friction of Si Nanotip Sliding on Graphene.
    Li Y; Wu B; Ouyang W; Liu Z; Wang W
    Nano Lett; 2024 Jan; 24(4):1130-1136. PubMed ID: 38252698
    [TBL] [Abstract][Full Text] [Related]  

  • 59. When 2D Materials Meet Molecules: Opportunities and Challenges of Hybrid Organic/Inorganic van der Waals Heterostructures.
    Gobbi M; Orgiu E; Samorì P
    Adv Mater; 2018 May; 30(18):e1706103. PubMed ID: 29441680
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanoscale Friction Behavior of Transition-Metal Dichalcogenides: Role of the Chalcogenide.
    Vazirisereshk MR; Hasz K; Zhao MQ; Johnson ATC; Carpick RW; Martini A
    ACS Nano; 2020 Nov; 14(11):16013-16021. PubMed ID: 33090766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.