These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39016699)

  • 1. Validation of predictive performance models for supersonic gas-jet nozzles at the Laboratory for Laser Energetics.
    McMillen KR; Heuer PV; Gjevre JM; Milder AL; Charles P; Filkins T; Rinderknecht HG; Froula DH; Shaw JL
    Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39016699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supersonic gas-jet characterization with interferometry and Thomson scattering on the OMEGA Laser System.
    Hansen AM; Haberberger D; Katz J; Mastrosimone D; Follett RK; Froula DH
    Rev Sci Instrum; 2018 Oct; 89(10):10C103. PubMed ID: 30399792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and characterization of supersonic nozzles for wide focus laser-plasma interactions.
    Lemos N; Lopes N; Dias JM; Viola F
    Rev Sci Instrum; 2009 Oct; 80(10):103301. PubMed ID: 19895054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental investigation on the performance of conical nozzles for argon cluster formation in supersonic jets.
    Lu H; Ni G; Li R; Xu Z
    J Chem Phys; 2010 Mar; 132(12):124303. PubMed ID: 20370119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of gas backing pressure and geometry of conical nozzle on the formation of methane clusters in supersonic jets.
    Lu H; Chen G; Ni G; Li R; Xu Z
    J Phys Chem A; 2010 Jan; 114(1):2-9. PubMed ID: 19957980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithm for supersonic gas jet density profile retrieval from interferometric measurement.
    Avtaeva SV; Gubin KV; Trunov VI; Tuev PV
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):910-917. PubMed ID: 31045020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nozzle for high-density supersonic gas jets at elevated temperatures.
    Heyl CM; Schoun SB; Porat G; Green H; Ye J
    Rev Sci Instrum; 2018 Nov; 89(11):113114. PubMed ID: 30501290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetric and asymmetric shocked gas jets for laser-plasma experiments.
    Rovige L; Huijts J; Vernier A; Andriyash I; Sylla F; Tomkus V; Girdauskas V; Raciukaitis G; Dudutis J; Stankevic V; Gecys P; Faure J
    Rev Sci Instrum; 2021 Aug; 92(8):083302. PubMed ID: 34470418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of supersonic jet turbulence, fine-scale noise, and shock-associated noise from characteristic, bi-conic, faceted, and fluidic injection nozzles.
    Patel TK; Miller SAE
    J Acoust Soc Am; 2021 Jul; 150(1):490. PubMed ID: 34340492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analysis of Supersonic Flow in Atmospheric and Low Pressure in the Region of Shock Waves Creation for Electron Microscopy.
    Šabacká P; Maxa J; Bayer R; Binar T; Bača P; Dostalová P; Mačák M; Čudek P
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of gas jet targets for laser-plasma experiments at near-critical density.
    Henares JL; Puyuelo-Valdes P; Hannachi F; Ceccotti T; Ehret M; Gobet F; Lancia L; Marquès JR; Santos JJ; Versteegen M; Tarisien M
    Rev Sci Instrum; 2019 Jun; 90(6):063302. PubMed ID: 31254995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Nozzle Geometry on Characteristics of Submerged Gas Jet and Bubble Noise.
    Bie HY; Ye JJ; Hao ZR
    J Lab Autom; 2016 Oct; 21(5):652-9. PubMed ID: 25931138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics study of the sonic horizon of microscopic Laval nozzles.
    Ortmayer H; Zillich RE
    Phys Rev E; 2024 Jun; 109(6-2):065104. PubMed ID: 39021024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experiments with rectangular supersonic jets with potential noise reduction technology.
    Scupski N; Akatsuka J; McLaughlin DK; Morris PJ
    J Acoust Soc Am; 2022 Jan; 151(1):56. PubMed ID: 35105007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of miniature supersonic nozzles for microparticle acceleration: a numerical study.
    Liu Y
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1814-21. PubMed ID: 17926679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of PWR fuel assembly vibrations using bio-inspired nozzles.
    Gad-El-Hak I; Mureithi N; Karazis K; Painter B
    Sci Rep; 2023 Nov; 13(1):20128. PubMed ID: 37978306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the forming mechanism of the cleaning airflow of pulse-jet fabric filters.
    Cai J; Hao W; Zhang C; Yu J; Wang T
    J Air Waste Manag Assoc; 2017 Dec; 67(12):1273-1287. PubMed ID: 28379118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative Geometric Arrangements of the Nozzle Outlet Orifice for Liquid Micro-Jet Focusing in Gas Dynamic Virtual Nozzles.
    Šarler B; Zahoor R; Bajt S
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33807027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, manufacturing, evaluation, and performance of a 3D-printed, custom-made nozzle for laser wakefield acceleration experiments.
    Andrianaki G; Grigoriadis A; Skoulakis A; Tazes I; Mancelli D; Fitilis I; Dimitriou V; Benis EP; Papadogiannis NA; Tatarakis M; Nikolos IK
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37855698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A free jet (supersonic), molecular beam source with automatized, 50 nm precision nozzle-skimmer positioning.
    Eder SD; Samelin B; Bracco G; Ansperger K; Holst B
    Rev Sci Instrum; 2013 Sep; 84(9):093303. PubMed ID: 24089819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.