These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 39018178)

  • 1. Controlled Noise: Evidence of epigenetic regulation of Single-Cell expression variability.
    Zhong Y; Cui S; Yang Y; Cai JJ
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 39018178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell Expression Variability Implies Cell Function.
    Osorio D; Yu X; Zhong Y; Li G; Yu P; Serpedin E; Huang JZ; Cai JJ
    Cells; 2019 Dec; 9(1):. PubMed ID: 31861624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization.
    Yan X; Zheng R; Chen J; Li M
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37584660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic Landscapes of Single-Cell Chromatin Accessibility and Transcriptomic Immune Profiles of T Cells in COVID-19 Patients.
    Li S; Wu B; Ling Y; Guo M; Qin B; Ren X; Wang C; Yang H; Chen L; Liao Y; Liu Y; Peng X; Xu C; Wang Z; Shen Y; Chen J; Liu L; Niu B; Zhu M; Liu L; Li F; Zhu T; Zhu Z; Zhou X; Lu H
    Front Immunol; 2021; 12():625881. PubMed ID: 33717140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq.
    Swanson E; Lord C; Reading J; Heubeck AT; Genge PC; Thomson Z; Weiss MD; Li XJ; Savage AK; Green RR; Torgerson TR; Bumol TF; Graybuck LT; Skene PJ
    Elife; 2021 Apr; 10():. PubMed ID: 33835024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scATACpipe: A nextflow pipeline for comprehensive and reproducible analyses of single cell ATAC-seq data.
    Hu K; Liu H; Lawson ND; Zhu LJ
    Front Cell Dev Biol; 2022; 10():981859. PubMed ID: 36238687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of scATAC-Seq with scRNA-Seq Data.
    Berest I; Tangherloni A
    Methods Mol Biol; 2023; 2584():293-310. PubMed ID: 36495457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CPPLS-MLP: a method for constructing cell-cell communication networks and identifying related highly variable genes based on single-cell sequencing and spatial transcriptomics data.
    Zhang T; Wu Z; Li L; Ren J; Zhang Z; Wang G
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destin: toolkit for single-cell analysis of chromatin accessibility.
    Urrutia E; Chen L; Zhou H; Jiang Y
    Bioinformatics; 2019 Oct; 35(19):3818-3820. PubMed ID: 30821321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking Algorithms for Gene Set Scoring of Single-cell ATAC-seq Data.
    Wang X; Lian Q; Dong H; Xu S; Su Y; Wu X
    Genomics Proteomics Bioinformatics; 2024 Jul; 22(2):. PubMed ID: 39049508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell RNA-seq highlights heterogeneity in human primary Wharton's jelly mesenchymal stem/stromal cells cultured in vitro.
    Sun C; Wang L; Wang H; Huang T; Yao W; Li J; Zhang X
    Stem Cell Res Ther; 2020 Apr; 11(1):149. PubMed ID: 32252818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning single-cell chromatin accessibility profiles using meta-analytic marker genes.
    Kawaguchi RK; Tang Z; Fischer S; Rajesh C; Tripathy R; Koo PK; Gillis J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36549922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement and Imputation of Peak Signal Enables Accurate Cell-Type Classification in scATAC-seq.
    Cui Z; Cui Y; Gao Y; Jiang T; Zang T; Wang Y
    Front Genet; 2021; 12():658352. PubMed ID: 33889181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental and practical approaches for single-cell ATAC-seq analysis.
    Shi P; Nie Y; Yang J; Zhang W; Tang Z; Xu J
    aBIOTECH; 2022 Sep; 3(3):212-223. PubMed ID: 36313930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder.
    Wang Z; Zhang Y; Yu Y; Zhang J; Liu Y; Zou Q
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy.
    Su Q; Huang W; Huang Y; Dai R; Chang C; Li QY; Liu H; Li Z; Zhao Y; Wu Q; Pan DG
    Cardiovasc Diabetol; 2024 Apr; 23(1):139. PubMed ID: 38664790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating network diffusion and peak location information for better single-cell ATAC-seq data analysis.
    Yu J; Leng J; Hou Z; Sun D; Wu LY
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38493346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are dropout imputation methods for scRNA-seq effective for scATAC-seq data?
    Liu Y; Zhang J; Wang S; Zeng X; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of computational methods for the analysis of single-cell ATAC-seq data.
    Chen H; Lareau C; Andreani T; Vinyard ME; Garcia SP; Clement K; Andrade-Navarro MA; Buenrostro JD; Pinello L
    Genome Biol; 2019 Nov; 20(1):241. PubMed ID: 31739806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.