These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 39018627)

  • 1. Safety assessment for autonomous vehicles: A reference driver model for highway merging scenarios.
    Wang C; Guo F; Zhao S; Zhu Z; Zhang Y
    Accid Anal Prev; 2024 Oct; 206():107710. PubMed ID: 39018627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How would autonomous vehicles behave in real-world crash scenarios?
    Zhou R; Zhang G; Huang H; Wei Z; Zhou H; Jin J; Chang F; Chen J
    Accid Anal Prev; 2024 Jul; 202():107572. PubMed ID: 38657314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Safety performance evaluation of freeway merging areas under autonomous vehicles environment using a co-simulation platform.
    Chen P; Ni H; Wang L; Yu G; Sun J
    Accid Anal Prev; 2024 May; 199():107530. PubMed ID: 38437756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Law compliance decision making for autonomous vehicles on highways.
    Ma X; Song L; Zhao C; Wu S; Yu W; Wang W; Yang L; Wang H
    Accid Anal Prev; 2024 Sep; 204():107620. PubMed ID: 38823082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety in higher level automated vehicles: Investigating edge cases in crashes of vehicles equipped with automated driving systems.
    Moradloo N; Mahdinia I; Khattak AJ
    Accid Anal Prev; 2024 Aug; 203():107607. PubMed ID: 38723333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety analysis of freeway on-ramp merging with the presence of autonomous vehicles.
    Zhu J; Tasic I
    Accid Anal Prev; 2021 Mar; 152():105966. PubMed ID: 33493941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z; Huang H; Tang J; Meng X; Hu L
    Accid Anal Prev; 2022 Sep; 174():106729. PubMed ID: 35700685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safer than the average human driver (who is less safe than me)? Examining a popular safety benchmark for self-driving cars.
    Nees MA
    J Safety Res; 2019 Jun; 69():61-68. PubMed ID: 31235236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Operational design domain of automated vehicles at freeway entrance terminals.
    Ye X; Wang X
    Accid Anal Prev; 2022 Sep; 174():106776. PubMed ID: 35870304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How do drivers respond to driving risk during car-following? Risk-response driver model and its application in human-like longitudinal control.
    Zhao X; He R; Wang J
    Accid Anal Prev; 2020 Dec; 148():105783. PubMed ID: 33022511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Driver models for the definition of safety requirements of automated vehicles in international regulations. Application to motorway driving conditions.
    Mattas K; Albano G; Donà R; Galassi MC; Suarez-Bertoa R; Vass S; Ciuffo B
    Accid Anal Prev; 2022 Sep; 174():106743. PubMed ID: 35700684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of automated vehicles in mixed traffic: Evaluating changes in performance of following human-driven vehicles.
    Mahdinia I; Mohammadnazar A; Arvin R; Khattak AJ
    Accid Anal Prev; 2021 Mar; 152():106006. PubMed ID: 33556655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of freeway-based test scenarios for applying new car assessment program to automated vehicles.
    Ko W; Park S; Park S; Jeong H; Yun I
    PLoS One; 2022; 17(7):e0271532. PubMed ID: 35862304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Driver-Automated Vehicle Interaction in Mixed Traffic: Types of Interaction and Drivers' Driving Styles.
    Ma Z; Zhang Y
    Hum Factors; 2024 Feb; 66(2):544-561. PubMed ID: 35469464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vehicle displays to support driver anticipation of traffic conflicts in automated vehicles.
    He D; Kanaan D; Donmez B
    Accid Anal Prev; 2021 Jan; 149():105842. PubMed ID: 33157393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-Like Lane Change Decision Model for Autonomous Vehicles that Considers the Risk Perception of Drivers in Mixed Traffic.
    Wang C; Sun Q; Li Z; Zhang H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human-like car-following model for autonomous vehicles considering the cut-in behavior of other vehicles in mixed traffic.
    Fu R; Li Z; Sun Q; Wang C
    Accid Anal Prev; 2019 Nov; 132():105260. PubMed ID: 31442924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preface to the special section on human factors and automation in vehicles: designing highly automated vehicles with the driver in mind.
    Merat N; Lee JD
    Hum Factors; 2012 Oct; 54(5):681-6. PubMed ID: 23156614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and classification of autonomous vehicle's ambiguous driving scenario.
    Baby T; Ippoliti HŞ; Wintersberger P; Zhang Y; Yoon SH; Lee J; Lee SC
    Accid Anal Prev; 2024 Jun; 200():107501. PubMed ID: 38471236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of pre-crash scenarios and contributing factors for autonomous vehicle crashes at intersections.
    Liu Q; Wang X; Liu S; Yu C; Glaser Y
    Accid Anal Prev; 2024 Feb; 195():107383. PubMed ID: 37984113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.