These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39018842)
1. Deciphering the role of micro/nano-hydroxyapatite in aerobic granular sludge system: Effects on treatment performance and enhancement mechanism. Shi W; Tang Y; Liu Y; Fan J; Huang S; Guo Y; Zhang B; Lens PNL J Environ Manage; 2024 Aug; 366():121850. PubMed ID: 39018842 [TBL] [Abstract][Full Text] [Related]
2. De novo granulation of sewage-borne microorganisms: A proof of concept on cultivating aerobic granular sludge without activated sludge and effective enhanced biological phosphorus removal. Sarvajith M; Nancharaiah YV Environ Res; 2023 May; 224():115500. PubMed ID: 36791839 [TBL] [Abstract][Full Text] [Related]
3. Functional analysis of extracellular polymeric substances (EPS) during the granulation of aerobic sludge: Relationship among EPS, granulation and nutrients removal. Liu X; Pei Q; Han H; Yin H; Chen M; Guo C; Li J; Qiu H Environ Res; 2022 May; 208():112692. PubMed ID: 34999029 [TBL] [Abstract][Full Text] [Related]
4. Aerobic granular sludge formation and stability in enhanced biological phosphorus removal system under antibiotics pressure: Performance, granulation mechanism, and microbial successions. Cheng L; Wei M; Hu Q; Li B; Li B; Wang W; Abudi ZN; Hu Z J Hazard Mater; 2023 Jul; 454():131472. PubMed ID: 37099906 [TBL] [Abstract][Full Text] [Related]
5. Positive effects of magnetic Fe Ouyang L; Qiu B Bioresour Technol; 2023 Jan; 368():128296. PubMed ID: 36370942 [TBL] [Abstract][Full Text] [Related]
6. Low-temperature-resistance granulation of activated sludge and the microbial responses to the granular structural stabilization. Yuan C; Sun F; Zhang J; Feng L; Tu H; Li A Chemosphere; 2023 Jan; 311(Pt 2):137146. PubMed ID: 36347348 [TBL] [Abstract][Full Text] [Related]
7. Effect of voltage intensity on the nutrient removal performance and microbial community in the iron electrolysis-integrated aerobic granular sludge system. Guo Y; Shi W; Zhang B; Li W; Lens PNL Environ Pollut; 2021 Apr; 274():116604. PubMed ID: 33548671 [TBL] [Abstract][Full Text] [Related]
8. Effect of gradual increase of salt on performance and microbial community during granulation process. Wang M; He J; Dong X; Zhang R J Environ Sci (China); 2025 Jan; 147():404-413. PubMed ID: 39003058 [TBL] [Abstract][Full Text] [Related]
9. Investigation of rapid granulation in SBRs treating aniline-rich wastewater with different aniline loading rates. Jiang Y; Wei L; Yang K; Wang H Sci Total Environ; 2019 Jan; 646():841-849. PubMed ID: 30064110 [TBL] [Abstract][Full Text] [Related]
10. Characterization of aerobic granular sludge used for the treatment of petroleum wastewater. Chen C; Ming J; Yoza BA; Liang J; Li QX; Guo H; Liu Z; Deng J; Wang Q Bioresour Technol; 2019 Jan; 271():353-359. PubMed ID: 30293030 [TBL] [Abstract][Full Text] [Related]
11. Impact of primary sedimentation on granulation and treatment performance of municipal wastewater by aerobic granular sludge process. Kosar S; Isik O; Cicekalan B; Gulhan H; Sagir Kurt E; Atli E; Basa S; Ozgun H; Koyuncu I; van Loosdrecht MCM; Ersahin ME J Environ Manage; 2022 Aug; 315():115191. PubMed ID: 35526399 [TBL] [Abstract][Full Text] [Related]
12. Effects of oxytetracycline on aerobic granular sludge process: Granulation, biological nutrient removal and microbial community structure. Nivedhita S; Shyni Jasmin P; Sarvajith M; Nancharaiah YV Chemosphere; 2022 Nov; 307(Pt 4):136103. PubMed ID: 35995202 [TBL] [Abstract][Full Text] [Related]
13. Pilot-scale investigation on nutrient removal characteristics of mineral-rich aerobic granular sludge: Identification of uncommon mechanisms. Pishgar R; Dominic JA; Tay JH; Chu A Water Res; 2020 Jan; 168():115151. PubMed ID: 31630019 [TBL] [Abstract][Full Text] [Related]
14. Treatment of real domestic sewage in a pilot-scale aerobic granular sludge reactor: Assessing start-up and operational control. Campos F; Guimarães NR; Maia FC; Sandoval MZ; Bassin JP; Bueno RF; Piveli RP Water Environ Res; 2021 Jun; 93(6):896-905. PubMed ID: 33176037 [TBL] [Abstract][Full Text] [Related]
15. Rapid start-up of an aerobic granular sludge system for nitrogen and phosphorus removal through seeding chitosan-based sludge aggregates. Zou J; Yu F; Pan J; Pan B; Wu S; Qian M; Li J Sci Total Environ; 2021 Mar; 762():144171. PubMed ID: 33360471 [TBL] [Abstract][Full Text] [Related]
16. Rapid start-up of photo-granule process in a photo-sequencing batch reactor under low aeration conditions: Effect of inoculum AGS size. Zhang B; Li W; Wu L; Shi W; Lens PNL Sci Total Environ; 2022 May; 820():153204. PubMed ID: 35051449 [TBL] [Abstract][Full Text] [Related]
17. Unveiling significance of Ca Guo Y; Zhang B; Feng S; Wang D; Li J; Shi W Environ Res; 2022 Sep; 212(Pt B):113299. PubMed ID: 35430279 [TBL] [Abstract][Full Text] [Related]
18. Pilot-scale aerobic granular sludge reactors with granular activated carbon for effective nitrogen and phosphorus removal from domestic wastewater. Nancharaiah YV; Sarvajith M; Mohan TVK Sci Total Environ; 2023 Oct; 894():164822. PubMed ID: 37331394 [TBL] [Abstract][Full Text] [Related]
19. Full-scale upgrade activated sludge to continuous-flow aerobic granular sludge: Implementing microaerobic-aerobic configuration with internal separators. Yu C; Wang K; Zhang K; Liu R; Zheng P Water Res; 2024 Jan; 248():120870. PubMed ID: 38007885 [TBL] [Abstract][Full Text] [Related]
20. The influence of different nitrate concentrations on aerobic sludge granulation and the role of extracellular polymeric substances. Zhang X; Zhao B; An Q; Zhang P J Environ Manage; 2023 Dec; 348():119226. PubMed ID: 37820429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]