These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 39018861)
21. Comparing Ultralong Carbon Nanotube Growth from Methane over Mono- and Bi-Metallic Iron Chloride Catalysts. Yick T; Gangoli VS; Orbaek White A Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570489 [TBL] [Abstract][Full Text] [Related]
22. Catalytic co-pyrolysis of herb residue and polypropylene for pyrolysis products upgrading and diversification using nickel-X/biochar and ZSM-5 (X = iron, cobalt, copper). Luo W; Wang T; Zhang S; Zhang D; Dong H; Song M; Zhou Z Bioresour Technol; 2022 Apr; 349():126845. PubMed ID: 35158035 [TBL] [Abstract][Full Text] [Related]
23. Nanosized carbon black combined with Ni2O3 as "universal" catalysts for synergistically catalyzing carbonization of polyolefin wastes to synthesize carbon nanotubes and application for supercapacitors. Wen X; Chen X; Tian N; Gong J; Liu J; Rümmeli MH; Chu PK; Mijiwska E; Tang T Environ Sci Technol; 2014 Apr; 48(7):4048-55. PubMed ID: 24611910 [TBL] [Abstract][Full Text] [Related]
24. Impacts of Mo Promotion on Nickel-Based Catalysts for the Synthesis of High Quality Carbon Nanotubes Using CO₂ as the Carbon Source. Li S; Sun S; Chu W; Li J; Wang J; Hu J; Jiang C J Nanosci Nanotechnol; 2020 Feb; 20(2):1109-1117. PubMed ID: 31383111 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate. Takagiwa S; Kanasugi O; Nakamura K; Kushida M J Nanosci Nanotechnol; 2016 Apr; 16(4):3289-94. PubMed ID: 27451619 [TBL] [Abstract][Full Text] [Related]
26. Influence of silica-alumina support ratio on H Zhang Y; Tao Y; Huang J; Williams P Waste Manag Res; 2017 Oct; 35(10):1045-1054. PubMed ID: 28789599 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of Fe-Zr, Co-Zr, and Ni-Zr Catalysts to Boost CNTs Synthesis from Plastic Wastes and the Electrocatalytic Oxygen Evolution Reaction. Sun X; Hou X; Dong A; Tian C; Yin L; Huang J; Cui T; Yuan E Langmuir; 2024 Jul; ():. PubMed ID: 39018430 [TBL] [Abstract][Full Text] [Related]
28. Facile use of coal combustion fly ash (CCFA) as Ni-Re bimetallic catalyst support for high-performance CO Dong X; Jin B; Cao S; Meng F; Chen T; Ding Q; Tong C Waste Manag; 2020 Apr; 107():244-251. PubMed ID: 32320937 [TBL] [Abstract][Full Text] [Related]
29. Release of carbon nanotubes during combustion of polymer nanocomposites in a pilot-scale facility for waste incineration. Janhäll S; Petersson M; Davidsson K; Öman T; Sommertune J; Kåredal M; Messing ME; Rissler J NanoImpact; 2021 Oct; 24():100357. PubMed ID: 35559816 [TBL] [Abstract][Full Text] [Related]
30. Stoichiometric-Ratio-Controlled Fe and Ni Non-Noble Metal Catalysts Supported on γ-Al Rajpoot A; Ahmad Khan A; Mohan I; Sengupta S; Ahmad E Chemphyschem; 2024 Oct; ():e202400670. PubMed ID: 39384544 [TBL] [Abstract][Full Text] [Related]
31. From waste to catalyst: Growth mechanisms of ZSM-5 zeolite from coal fly ash & rice husk ash and its performance as catalyst for tetracycline degradation in fenton-like oxidation. Zhao Y; Gu S; Li L; Wang M Environ Pollut; 2024 Mar; 345():123509. PubMed ID: 38325512 [TBL] [Abstract][Full Text] [Related]
32. Catalytic decomposition of toxic chemicals over metal-promoted carbon nanotubes. Li L; Han C; Han X; Zhou Y; Yang L; Zhang B; Hu J Environ Sci Technol; 2011 Jan; 45(2):726-31. PubMed ID: 21141883 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of carbon nanotubes via chemical vapor deposition: an advanced application in the Management of Electroplating Effluent. Verma B; Sewani H; Balomajumder C Environ Sci Pollut Res Int; 2020 Apr; 27(12):14007-14018. PubMed ID: 32036530 [TBL] [Abstract][Full Text] [Related]
34. Catalytic Preparation of Carbon Nanotubes from Waste Polyethylene Using FeNi Bimetallic Nanocatalyst. Li K; Zhang H; Zheng Y; Yuan G; Jia Q; Zhang S Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32756317 [TBL] [Abstract][Full Text] [Related]
35. Polyolefin-derived substrate-grown carbon nanotubes as binder-free electrode for hydrogen evolution in alkaline media. Wu X; Tu WH; Veksha A; Chen W; Lisak G Chemosphere; 2024 Feb; 349():140769. PubMed ID: 38000550 [TBL] [Abstract][Full Text] [Related]
36. Highly ordered carbon nanotubes based on porous aluminum oxide: fabrication and mechanism. Pan H; Gao H; Lim SH; Feng YP; Lin J J Nanosci Nanotechnol; 2005 Feb; 5(2):277-81. PubMed ID: 15853148 [TBL] [Abstract][Full Text] [Related]
37. Evaluating the potential of CNT-supported Co catalyst used for gas pollution removal in the incineration flue gas. Lu CY; Tseng HH; Wey MY; Chuang KH; Kuo JH J Environ Manage; 2009 Apr; 90(5):1884-92. PubMed ID: 19203827 [TBL] [Abstract][Full Text] [Related]
38. Application of solid ash based catalysts in heterogeneous catalysis. Wang S Environ Sci Technol; 2008 Oct; 42(19):7055-63. PubMed ID: 18939526 [TBL] [Abstract][Full Text] [Related]
39. Modification of tubular ceramic membranes with carbon nanotubes using catalytic chemical vapor deposition. Tran DT; Thieffry G; Jacob M; Batiot-Dupeyrat C; Teychene B Water Sci Technol; 2015; 72(8):1404-10. PubMed ID: 26465312 [TBL] [Abstract][Full Text] [Related]
40. Highly ordered carbon nanotubes based on porous aluminum oxide. Pan H; Gao H; Lim SH; Feng YP; Lin J J Nanosci Nanotechnol; 2004 Nov; 4(8):1014-8. PubMed ID: 15656195 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]