These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 39019034)
21. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. Green R; Switzer C; Noller HF Science; 1998 Apr; 280(5361):286-9. PubMed ID: 9535658 [TBL] [Abstract][Full Text] [Related]
22. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Xiong L; Shah S; Mauvais P; Mankin AS Mol Microbiol; 1999 Jan; 31(2):633-9. PubMed ID: 10027979 [TBL] [Abstract][Full Text] [Related]
23. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. Harms JM; Schlünzen F; Fucini P; Bartels H; Yonath A BMC Biol; 2004 Apr; 2():4. PubMed ID: 15059283 [TBL] [Abstract][Full Text] [Related]
24. Sequence complementarity at the ribosomal Peptidyl Transferase Centre implies self-replicating origin. Agmon I FEBS Lett; 2017 Oct; 591(20):3252-3258. PubMed ID: 28786485 [TBL] [Abstract][Full Text] [Related]
25. Inhibition of Escherichia coli ribosome subunit dissociation by chloramphenicol and Blasticidin: a new mode of action of the antibiotics. Pathak BK; Mondal S; Barat C Lett Appl Microbiol; 2017 Jan; 64(1):79-85. PubMed ID: 27739094 [TBL] [Abstract][Full Text] [Related]
26. The mode of action of griseoviridin at the ribosome level. Barbacid M; Contreras A; Vazquez D Biochim Biophys Acta; 1975 Jul; 395(3):347-54. PubMed ID: 1096949 [TBL] [Abstract][Full Text] [Related]
27. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Schlünzen F; Zarivach R; Harms J; Bashan A; Tocilj A; Albrecht R; Yonath A; Franceschi F Nature; 2001 Oct; 413(6858):814-21. PubMed ID: 11677599 [TBL] [Abstract][Full Text] [Related]
29. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. Green R; Samaha RR; Noller HF J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969 [TBL] [Abstract][Full Text] [Related]
30. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Moazed D; Noller HF Biochimie; 1987 Aug; 69(8):879-84. PubMed ID: 3122849 [TBL] [Abstract][Full Text] [Related]
31. A sparsomycin-resistant mutant of Halobacterium salinarium lacks a modification at nucleotide U2603 in the peptidyl transferase centre of 23 S rRNA. Lázaro E; Rodriguez-Fonseca C; Porse B; Ureña D; Garrett RA; Ballesta JP J Mol Biol; 1996 Aug; 261(2):231-8. PubMed ID: 8757290 [TBL] [Abstract][Full Text] [Related]
32. A noncanonical binding site of chloramphenicol revealed via molecular dynamics simulations. Makarov GI; Makarova TM Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2940-2947. PubMed ID: 30248377 [TBL] [Abstract][Full Text] [Related]
33. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Wilson DN; Schluenzen F; Harms JM; Starosta AL; Connell SR; Fucini P Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13339-44. PubMed ID: 18757750 [TBL] [Abstract][Full Text] [Related]
34. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Voorhees RM; Weixlbaumer A; Loakes D; Kelley AC; Ramakrishnan V Nat Struct Mol Biol; 2009 May; 16(5):528-33. PubMed ID: 19363482 [TBL] [Abstract][Full Text] [Related]
35. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Samaha RR; Green R; Noller HF Nature; 1995 Sep; 377(6547):309-14. PubMed ID: 7566085 [TBL] [Abstract][Full Text] [Related]
36. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Kim DF; Green R Mol Cell; 1999 Nov; 4(5):859-64. PubMed ID: 10619032 [TBL] [Abstract][Full Text] [Related]
37. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action. Xiong L; Kloss P; Douthwaite S; Andersen NM; Swaney S; Shinabarger DL; Mankin AS J Bacteriol; 2000 Oct; 182(19):5325-31. PubMed ID: 10986233 [TBL] [Abstract][Full Text] [Related]
38. On the structural basis of peptide-bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit. Steitz TA FEBS Lett; 2005 Feb; 579(4):955-8. PubMed ID: 15680981 [TBL] [Abstract][Full Text] [Related]
39. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome. Yu H; Chan YL; Wool IG J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738 [TBL] [Abstract][Full Text] [Related]
40. Effect of antibiotics on large ribosomal subunit assembly reveals possible function of 5 S rRNA. Khaitovich P; Mankin AS J Mol Biol; 1999 Sep; 291(5):1025-34. PubMed ID: 10518940 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]