These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 39019034)
41. Clindamycin binding to ribosomes revisited: foot printing and computational detection of two binding sites within the peptidyl transferase center. Kostopoulou ON; Papadopoulos G; Kouvela EC; Kalpaxis DL Pharmazie; 2013 Jul; 68(7):616-21. PubMed ID: 23923646 [TBL] [Abstract][Full Text] [Related]
42. Photo-affinity labelling at the peptidyl transferase centre reveals two different positions for the A- and P-sites in domain V of 23S rRNA. Steiner G; Kuechler E; Barta A EMBO J; 1988 Dec; 7(12):3949-55. PubMed ID: 3061810 [TBL] [Abstract][Full Text] [Related]
43. Periodic conformational changes in rRNA: monitoring the dynamics of translating ribosomes. Polacek N; Patzke S; Nierhaus KH; Barta A Mol Cell; 2000 Jul; 6(1):159-71. PubMed ID: 10949037 [TBL] [Abstract][Full Text] [Related]
45. Probing functions of the ribosomal peptidyl transferase center by nucleotide analog interference. Erlacher MD; Polacek N Methods Mol Biol; 2012; 848():215-26. PubMed ID: 22315072 [TBL] [Abstract][Full Text] [Related]
46. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide. Cruz-Vera LR; Gong M; Yanofsky C Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360 [TBL] [Abstract][Full Text] [Related]
47. An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors. Toh SM; Mankin AS J Mol Biol; 2008 Jul; 380(4):593-7. PubMed ID: 18554609 [TBL] [Abstract][Full Text] [Related]
48. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2'-OH at A2451 of 23S rRNA. Erlacher MD; Lang K; Wotzel B; Rieder R; Micura R; Polacek N J Am Chem Soc; 2006 Apr; 128(13):4453-9. PubMed ID: 16569023 [TBL] [Abstract][Full Text] [Related]
49. Identification of a rRNA/chloramphenicol interaction site within the peptidyltransferase center of the 50 S subunit of the Escherichia coli ribosome. Marconi RT; Lodmell JS; Hill WE J Biol Chem; 1990 May; 265(14):7894-9. PubMed ID: 1692317 [TBL] [Abstract][Full Text] [Related]
50. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome. Poulsen SM; Karlsson M; Johansson LB; Vester B Mol Microbiol; 2001 Sep; 41(5):1091-9. PubMed ID: 11555289 [TBL] [Abstract][Full Text] [Related]
51. Dynamics of the context-specific translation arrest by chloramphenicol and linezolid. Choi J; Marks J; Zhang J; Chen DH; Wang J; Vázquez-Laslop N; Mankin AS; Puglisi JD Nat Chem Biol; 2020 Mar; 16(3):310-317. PubMed ID: 31844301 [TBL] [Abstract][Full Text] [Related]
52. Structure of a conserved RNA component of the peptidyl transferase centre. Puglisi EV; Green R; Noller HF; Puglisi JD Nat Struct Biol; 1997 Oct; 4(10):775-8. PubMed ID: 9334738 [TBL] [Abstract][Full Text] [Related]
53. Molecular dynamics simulations suggest why the A2058G mutation in 23S RNA results in bacterial resistance against clindamycin. Kulczycka-Mierzejewska K; Sadlej J; Trylska J J Mol Model; 2018 Jul; 24(8):191. PubMed ID: 29971530 [TBL] [Abstract][Full Text] [Related]
54. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA. Vester B; Garrett RA EMBO J; 1988 Nov; 7(11):3577-87. PubMed ID: 3061800 [TBL] [Abstract][Full Text] [Related]
55. Mutations in the peptidyl transferase region of E. coli 23S rRNA affecting translational accuracy. Gregory ST; Lieberman KR; Dahlberg AE Nucleic Acids Res; 1994 Feb; 22(3):279-84. PubMed ID: 8127663 [TBL] [Abstract][Full Text] [Related]
56. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel. Yoshida H; Yamamoto H; Uchiumi T; Wada A Genes Cells; 2004 Apr; 9(4):271-8. PubMed ID: 15066119 [TBL] [Abstract][Full Text] [Related]
57. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Polacek N; Gomez MJ; Ito K; Xiong L; Nakamura Y; Mankin A Mol Cell; 2003 Jan; 11(1):103-12. PubMed ID: 12535525 [TBL] [Abstract][Full Text] [Related]
58. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. Rodriguez-Fonseca C; Amils R; Garrett RA J Mol Biol; 1995 Mar; 247(2):224-35. PubMed ID: 7707371 [TBL] [Abstract][Full Text] [Related]
59. 23S rRNA positions essential for tRNA binding in ribosomal functional sites. Bocchetta M; Xiong L; Mankin AS Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3525-30. PubMed ID: 9520399 [TBL] [Abstract][Full Text] [Related]
60. Protein synthesis by ribosomes with tethered subunits. Orelle C; Carlson ED; Szal T; Florin T; Jewett MC; Mankin AS Nature; 2015 Aug; 524(7563):119-24. PubMed ID: 26222032 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]