These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 39019295)
1. Assessing texturometer-derived rheological data for predicting the printability of gummy formulations in SSE 3D printing. Aina M; Baillon F; Sescousse R; Sanchez-Ballester NM; Begu S; Soulairol I; Sauceau M Int J Pharm; 2024 Sep; 662():124471. PubMed ID: 39019295 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the printability of agar and hydroxypropyl methylcellulose gels as gummy formulations: Insights from rheological properties. Aina M; Baillon F; Sescousse R; Sanchez-Ballester NM; Begu S; Soulairol I; Sauceau M Int J Pharm; 2024 Apr; 654():123937. PubMed ID: 38401873 [TBL] [Abstract][Full Text] [Related]
3. Lessons to Learn for 3D Printing of Drug Products by Semisolid Extrusion (SSE). Sun W; Rantanen J; Genina N J Pharm Sci; 2024 Sep; 113(9):2957-2966. PubMed ID: 38852672 [TBL] [Abstract][Full Text] [Related]
4. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
5. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: The enhancement of printability using plasticised HPMCAS. Oladeji S; Mohylyuk V; Jones DS; Andrews GP Int J Pharm; 2022 Mar; 616():121553. PubMed ID: 35131354 [TBL] [Abstract][Full Text] [Related]
6. An investigation into the effects of ink formulations of semi-solid extrusion 3D printing on the performance of printed solid dosage forms. Zhang B; Belton P; Teoh XY; Gleadall A; Bibb R; Qi S J Mater Chem B; 2023 Dec; 12(1):131-144. PubMed ID: 38050731 [TBL] [Abstract][Full Text] [Related]
7. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
8. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing. Teoh XY; Zhang B; Belton P; Chan SY; Qi S Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083 [TBL] [Abstract][Full Text] [Related]
9. Rheological evaluation of wet masses for the preparation of pharmaceutical pellets by capillary and rotational rheometers. Majidi S; Motlagh GH; Bahramian B; Kaffashi B; Nojoumi SA; Haririan I Pharm Dev Technol; 2013 Feb; 18(1):112-20. PubMed ID: 22188436 [TBL] [Abstract][Full Text] [Related]
10. Development of a simple paste for 3D printing of drug formulations containing a mesoporous material loaded with a poorly water-soluble drug. Katsiotis CS; Tikhomirov E; Leliopoulos C; Strømme M; Welch K Eur J Pharm Biopharm; 2024 May; 198():114270. PubMed ID: 38537908 [TBL] [Abstract][Full Text] [Related]
11. Extrudability analysis of drug loaded pastes for 3D printing of modified release tablets. Zidan A; Alayoubi A; Coburn J; Asfari S; Ghammraoui B; Cruz CN; Ashraf M Int J Pharm; 2019 Jan; 554():292-301. PubMed ID: 30439491 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of Muco-Adhesive Oral Films by the 3D Printing of Hydroxypropyl Methylcellulose-Based Catechin-Loaded Formulations. Tagami T; Yoshimura N; Goto E; Noda T; Ozeki T Biol Pharm Bull; 2019; 42(11):1898-1905. PubMed ID: 31685772 [TBL] [Abstract][Full Text] [Related]
13. Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels. Barrulas RV; Corvo MC Gels; 2023 Dec; 9(12):. PubMed ID: 38131974 [TBL] [Abstract][Full Text] [Related]
14. Machine Learning Reveals a General Understanding of Printability in Formulations Based on Rheology Additives. Nadernezhad A; Groll J Adv Sci (Weinh); 2022 Oct; 9(29):e2202638. PubMed ID: 36008135 [TBL] [Abstract][Full Text] [Related]
15. 3D printing of gummy drug formulations composed of gelatin and an HPMC-based hydrogel for pediatric use. Tagami T; Ito E; Kida R; Hirose K; Noda T; Ozeki T Int J Pharm; 2021 Feb; 594():120118. PubMed ID: 33326827 [TBL] [Abstract][Full Text] [Related]
16. Integrating pressure sensor control into semi-solid extrusion 3D printing to optimize medicine manufacturing. Díaz-Torres E; Rodríguez-Pombo L; Ong JJ; Basit AW; Santoveña-Estévez A; Fariña JB; Alvarez-Lorenzo C; Goyanes A Int J Pharm X; 2022 Dec; 4():100133. PubMed ID: 36299772 [TBL] [Abstract][Full Text] [Related]
17. Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer. Allahham A; Stewart P; Marriott J; Mainwaring DE Int J Pharm; 2004 Feb; 270(1-2):139-48. PubMed ID: 14726130 [TBL] [Abstract][Full Text] [Related]
18. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
19. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents. Brodin E; Boehmer M; Prentice A; Neff E; McCoy K; Mueller J; Saul J; Sparks JL Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35793683 [TBL] [Abstract][Full Text] [Related]
20. 3D printing tablets: Predicting printability and drug dissolution from rheological data. Elbadawi M; Gustaffson T; Gaisford S; Basit AW Int J Pharm; 2020 Nov; 590():119868. PubMed ID: 32950668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]