These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39020889)
21. Interface Roughening in Nonequilibrium Phase-Separated Systems. Besse M; Fausti G; Cates ME; Delamotte B; Nardini C Phys Rev Lett; 2023 May; 130(18):187102. PubMed ID: 37204903 [TBL] [Abstract][Full Text] [Related]
22. Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet. Ljubotina M; Žnidarič M; Prosen T Phys Rev Lett; 2019 May; 122(21):210602. PubMed ID: 31283341 [TBL] [Abstract][Full Text] [Related]
23. Renormalization group analysis of the anisotropic nonlocal kardar-parisi-zhang equation with spatially correlated noise. Jung Y; Park K; Kim HJ; Kim Im Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1893-6. PubMed ID: 11088652 [TBL] [Abstract][Full Text] [Related]
24. Restoring the Fluctuation-Dissipation Theorem in Kardar-Parisi-Zhang Universality Class through a New Emergent Fractal Dimension. Gomes-Filho MS; de Castro P; Liarte DB; Oliveira FA Entropy (Basel); 2024 Mar; 26(3):. PubMed ID: 38539771 [TBL] [Abstract][Full Text] [Related]
25. Universal Kardar-Parisi-Zhang transient diffusion in nonequilibrium anharmonic chains. Ming Y; Hu H; Li HM; Ding ZJ; Ren J Phys Rev E; 2023 Jan; 107(1-1):014204. PubMed ID: 36797957 [TBL] [Abstract][Full Text] [Related]
26. Fibonacci family of dynamical universality classes. Popkov V; Schadschneider A; Schmidt J; Schütz GM Proc Natl Acad Sci U S A; 2015 Oct; 112(41):12645-50. PubMed ID: 26424449 [TBL] [Abstract][Full Text] [Related]
27. Initial perturbation matters: Implications of geometry-dependent universal Kardar-Parisi-Zhang statistics for spatiotemporal chaos. Fukai YT; Takeuchi KA Chaos; 2021 Nov; 31(11):111103. PubMed ID: 34881614 [TBL] [Abstract][Full Text] [Related]
29. Logarithmic or algebraic: Roughening of an active Kardar-Parisi-Zhang surface. Jana D; Haldar A; Basu A Phys Rev E; 2024 Mar; 109(3):L032104. PubMed ID: 38632771 [TBL] [Abstract][Full Text] [Related]
30. Universal aspects of curved, flat, and stationary-state Kardar-Parisi-Zhang statistics. Halpin-Healy T; Lin Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010103. PubMed ID: 24580153 [TBL] [Abstract][Full Text] [Related]
31. Nonperturbative renormalization group for the stationary Kardar-Parisi-Zhang equation: scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions. Kloss T; Canet L; Wschebor N Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051124. PubMed ID: 23214755 [TBL] [Abstract][Full Text] [Related]
32. Universal Kardar-Parisi-Zhang Dynamics in Integrable Quantum Systems. Ye B; Machado F; Kemp J; Hutson RB; Yao NY Phys Rev Lett; 2022 Dec; 129(23):230602. PubMed ID: 36563207 [TBL] [Abstract][Full Text] [Related]
33. Origins of scaling corrections in ballistic growth models. Alves SG; Oliveira TJ; Ferreira SC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052405. PubMed ID: 25493801 [TBL] [Abstract][Full Text] [Related]
34. Transients due to instabilities hinder Kardar-Parisi-Zhang scaling: a unified derivation for surface growth by electrochemical and chemical vapor deposition. Cuerno R; Castro M Phys Rev Lett; 2001 Dec; 87(23):236103. PubMed ID: 11736462 [TBL] [Abstract][Full Text] [Related]
35. Stretching of a Fractal Polymer around a Disc Reveals Kardar-Parisi-Zhang Scaling. Polovnikov KE; Nechaev SK; Grosberg AY Phys Rev Lett; 2022 Aug; 129(9):097801. PubMed ID: 36083665 [TBL] [Abstract][Full Text] [Related]
36. Equation-free dynamic renormalization of a Kardar-Parisi-Zhang-type equation. Kessler DA; Kevrekidis IG; Chen L Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036703. PubMed ID: 16605694 [TBL] [Abstract][Full Text] [Related]
37. Dynamic screening in a two-species asymmetric exclusion process. Kim KH; den Nijs M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021107. PubMed ID: 17930006 [TBL] [Abstract][Full Text] [Related]
38. Kardar-Parisi-Zhang universality of the Nagel-Schreckenberg model. de Gier J; Schadschneider A; Schmidt J; Schütz GM Phys Rev E; 2019 Nov; 100(5-1):052111. PubMed ID: 31869969 [TBL] [Abstract][Full Text] [Related]
39. Depinning in the quenched Kardar-Parisi-Zhang class. I. Mappings, simulations, and algorithm. Mukerjee G; Bonachela JA; Muñoz MA; Wiese KJ Phys Rev E; 2023 May; 107(5-1):054136. PubMed ID: 37328984 [TBL] [Abstract][Full Text] [Related]
40. What is the connection between ballistic deposition and the Kardar-Parisi-Zhang equation? Katzav E; Schwartz M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061608. PubMed ID: 15697382 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]