These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 39020889)

  • 41. Diffusion in time-dependent random media and the Kardar-Parisi-Zhang equation.
    Le Doussal P; Thiery T
    Phys Rev E; 2017 Jul; 96(1-1):010102. PubMed ID: 29347226
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nonlocal Kardar-Parisi-Zhang equation with spatially correlated noise.
    Chattopadhyay AK
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):293-6. PubMed ID: 11969762
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kardar-Parisi-Zhang equation with temporally correlated noise: a self-consistent approach.
    Katzav E; Schwartz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011601. PubMed ID: 15324059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fragility of Kardar-Parisi-Zhang universality class in the presence of temporally correlated noise.
    Rodríguez-Fernández E; Alés A; Martín-Álvarez J; López JM
    Phys Rev E; 2024 Aug; 110(2-1):024104. PubMed ID: 39295039
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical method for accessing the universal scaling function for a multiparticle discrete time asymmetric exclusion process.
    Chia N; Bundschuh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051102. PubMed ID: 16383588
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sinc noise for the Kardar-Parisi-Zhang equation.
    Niggemann O; Hinrichsen H
    Phys Rev E; 2018 Jun; 97(6-1):062125. PubMed ID: 30011492
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model.
    Ódor G; Kelling J; Gemming S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032146. PubMed ID: 24730828
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic criticality far from equilibrium: One-loop flow of Burgers-Kardar-Parisi-Zhang systems with broken Galilean invariance.
    Strack P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032131. PubMed ID: 25871078
    [TBL] [Abstract][Full Text] [Related]  

  • 49. First-passage percolation under extreme disorder: From bond percolation to Kardar-Parisi-Zhang universality.
    Villarrubia D; Álvarez Domenech I; Santalla SN; Rodríguez-Laguna J; Córdoba-Torres P
    Phys Rev E; 2020 Jun; 101(6-1):062124. PubMed ID: 32688550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent developments on the Kardar-Parisi-Zhang surface-growth equation.
    Wio HS; Escudero C; Revelli JA; Deza RR; de la Lama MS
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1935):396-411. PubMed ID: 21149379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kardar-Parisi-Zhang Interfaces with Curved Initial Shapes and Variational Formula.
    Fukai YT; Takeuchi KA
    Phys Rev Lett; 2020 Feb; 124(6):060601. PubMed ID: 32109110
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kardar-Parisi-Zhang modes in d-dimensional directed polymers.
    Schütz GM; Wehefritz-Kaufmann B
    Phys Rev E; 2017 Sep; 96(3-1):032119. PubMed ID: 29346934
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation.
    Nicoli M; Vivo E; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):045202. PubMed ID: 21230337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Galerkin-truncated Burgers equation: crossover from inviscid-thermalized to Kardar-Parisi-Zhang scaling.
    Cartes C; Tirapegui E; Pandit R; Brachet M
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210090. PubMed ID: 35094560
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conformal invariance of isoheight lines in a two-dimensional Kardar-Parisi-Zhang surface.
    Saberi AA; Niry MD; Fazeli SM; Rahimi Tabar MR; Rouhani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051607. PubMed ID: 18643079
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conserved Kardar-Parisi-Zhang equation: Role of quenched disorder in determining universality.
    Mukherjee S
    Phys Rev E; 2021 Apr; 103(4-1):042102. PubMed ID: 34005933
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Weak and strong dynamic scaling in a one-dimensional driven coupled-field model: effects of kinematic waves.
    Das D; Basu A; Barma M; Ramaswamy S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021402. PubMed ID: 11497577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class.
    Gomes WP; Penna ALA; Oliveira FA
    Phys Rev E; 2019 Aug; 100(2-1):020101. PubMed ID: 31574642
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Active-to-absorbing-state phase transition in the presence of fluctuating environments: weak and strong dynamic scaling.
    Sarkar N; Basu A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021122. PubMed ID: 23005737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-organized interface growth with the negative nonlinearity in a random medium.
    Choi YM; Kim HJ; Kim IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):047102. PubMed ID: 12443383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.