These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39020891)

  • 1. Simple proof that there is no sign problem in path integral Monte Carlo simulations of fermions in one dimension.
    Chin SA
    Phys Rev E; 2024 Jun; 109(6-2):065312. PubMed ID: 39020891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No sign problem in one-dimensional path integral Monte Carlo simulation of fermions: A topological proof.
    Chin SA
    Phys Rev E; 2023 Mar; 107(3-2):035305. PubMed ID: 37073069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Path integral Monte Carlo simulation of degenerate electrons: Permutation-cycle properties.
    Dornheim T; Groth S; Filinov AV; Bonitz M
    J Chem Phys; 2019 Jul; 151(1):014108. PubMed ID: 31272157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Path integral molecular dynamics for fermions: Alleviating the sign problem with the Bogoliubov inequality.
    Hirshberg B; Invernizzi M; Parrinello M
    J Chem Phys; 2020 May; 152(17):171102. PubMed ID: 32384858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-order path-integral Monte Carlo methods for solving quantum dot problems.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):031301. PubMed ID: 25871047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remedy for the fermion sign problem in the diffusion Monte Carlo method for few fermions with antisymmetric diffusion process.
    Mishchenko Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026706. PubMed ID: 16605482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuating the fermion sign problem in path integral Monte Carlo simulations using the Bogoliubov inequality and thermodynamic integration.
    Dornheim T; Invernizzi M; Vorberger J; Hirshberg B
    J Chem Phys; 2020 Dec; 153(23):234104. PubMed ID: 33353338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter.
    Dornheim T
    Phys Rev E; 2019 Aug; 100(2-1):023307. PubMed ID: 31574603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving fermion problems without solving the sign problem: Symmetry-breaking wave functions from similarity-transformed propagators for solving two-dimensional quantum dots.
    Chin SA
    Phys Rev E; 2020 Apr; 101(4-1):043304. PubMed ID: 32422780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomy of path integral Monte Carlo: Algebraic derivation of the harmonic oscillator's universal discrete imaginary-time propagator and its sequential optimization.
    Chin SA
    J Chem Phys; 2023 Oct; 159(13):. PubMed ID: 37795786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations.
    Wei ZC; Wu C; Li Y; Zhang S; Xiang T
    Phys Rev Lett; 2016 Jun; 116(25):250601. PubMed ID: 27391709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extrapolated high-order propagators for path integral Monte Carlo simulations.
    Zillich RE; Mayrhofer JM; Chin SA
    J Chem Phys; 2010 Jan; 132(4):044103. PubMed ID: 20113015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio path integral Monte Carlo simulations of hydrogen snapshots at warm dense matter conditions.
    Böhme M; Moldabekov ZA; Vorberger J; Dornheim T
    Phys Rev E; 2023 Jan; 107(1-2):015206. PubMed ID: 36797933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermionic physics from ab initio path integral Monte Carlo simulations of fictitious identical particles.
    Dornheim T; Tolias P; Groth S; Moldabekov ZA; Vorberger J; Hirshberg B
    J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37888764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigating the Sign Problem through Basis Rotations.
    Levy R; Clark BK
    Phys Rev Lett; 2021 May; 126(21):216401. PubMed ID: 34114868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio path integral Monte Carlo simulations of warm dense two-component systems without fixed nodes: Structural properties.
    Dornheim T; Schwalbe S; Böhme MP; Moldabekov ZA; Vorberger J; Tolias P
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38666571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Path integral Monte Carlo approach to the structural properties and collective excitations of liquid [Formula: see text] without fixed nodes.
    Dornheim T; Moldabekov ZA; Vorberger J; Militzer B
    Sci Rep; 2022 Jan; 12(1):708. PubMed ID: 35027602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Path-integral Monte Carlo method for Rényi entanglement entropies.
    Herdman CM; Inglis S; Roy PN; Melko RG; Del Maestro A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013308. PubMed ID: 25122411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restricted configuration path integral Monte Carlo.
    Yilmaz A; Hunger K; Dornheim T; Groth S; Bonitz M
    J Chem Phys; 2020 Sep; 153(12):124114. PubMed ID: 33003704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path-integral-expanded-ensemble Monte Carlo method in treatment of the sign problem for fermions.
    Voznesenskiy MA; Vorontsov-Velyaminov PN; Lyubartsev AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066702. PubMed ID: 20365297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.