BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3902093)

  • 1. Nucleoside transport and metabolism in erythrocytes from the Yucatan miniature pig. Evidence that inosine functions as an in vivo energy substrate.
    Young JD; Paterson AR; Henderson JF
    Biochim Biophys Acta; 1985 Oct; 842(2-3):214-24. PubMed ID: 3902093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrobenzylthioinosine: an in vivo inhibitor of pig erythrocyte energy metabolism.
    Young JD; Jarvis SM; Clanachan AS; Henderson JF; Paterson AR
    Am J Physiol; 1986 Jul; 251(1 Pt 1):C90-4. PubMed ID: 3728661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is inosine the physiological energy source of pig erythrocytes?
    Jarvis SM; Young JD; Ansay M; Archibald AL; Harkness RA; Simmonds RJ
    Biochim Biophys Acta; 1980 Mar; 597(1):183-8. PubMed ID: 7370243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosides and glutamine are primary energy substrates for embryonic and adult chicken red cells.
    Mathew A; Grdisa M; Johnstone RM
    Biochem Cell Biol; 1993; 71(5-6):288-95. PubMed ID: 8274268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The liver is an organ site for the release of inosine metabolized by non-glycolytic pig red cells.
    Zeidler RB; Metzler MH; Moran JB; Kim HD
    Biochim Biophys Acta; 1985 Mar; 838(3):321-8. PubMed ID: 3970973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is adenosine a second metabolic substrate for human red blood cells?
    Kim HD
    Biochim Biophys Acta; 1990 Nov; 1036(2):113-20. PubMed ID: 2223829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleoside transport in sheep erythrocytes: genetically controlled transport variation and its influence on erythrocyte ATP concentrations.
    Young JD
    J Physiol; 1978 Apr; 277():325-39. PubMed ID: 650536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inosine from liver as a possible energy source for pig red blood cells.
    Watts RP; Brendel K; Luthra MG; Kim HD
    Life Sci; 1979 Oct; 25(18):1577-82. PubMed ID: 522613
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of adenosine on glucose metabolism of Rana ridibunda erythrocytes.
    Kaloyianni M; Michaelidis B; Moutou K
    J Exp Biol; 1993 Apr; 177():41-50. PubMed ID: 8487000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleoside transport in human and sheep erythrocytes. Evidence that nitrobenzylthioinosine binds specifically to functional nucleoside-transport sites.
    Jarvis SM; Young JD
    Biochem J; 1980 Aug; 190(2):377-83. PubMed ID: 7470056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleoside and glucose transport in erythrocytes from new-born lambs.
    Mooney NA; Young JD
    J Physiol; 1978 Nov; 284():229-39. PubMed ID: 731533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pig red blood cell hexokinase: regulatory characteristics and possible physiological role.
    Magnani M; Stocchi V; Serafini N; Piatti E; Dachà M; Fornaini G
    Arch Biochem Biophys; 1983 Oct; 226(1):377-87. PubMed ID: 6605723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine, inosine, and guanosine protect glial cells during glucose deprivation and mitochondrial inhibition: correlation between protection and ATP preservation.
    Jurkowitz MS; Litsky ML; Browning MJ; Hohl CM
    J Neurochem; 1998 Aug; 71(2):535-48. PubMed ID: 9681443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte nucleoside transport: asymmetrical binding of nitrobenzylthioinosine to nucleoside permeation sites.
    Jarvis SM; McBride D; Young JD
    J Physiol; 1982 Mar; 324():31-46. PubMed ID: 7097603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cow red blood cells. III. Postnatal adaptation of energy metabolism in the calf red blood cells.
    Kim HD
    Biochim Biophys Acta; 1979 Nov; 588(1):44-54. PubMed ID: 497245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenine nucleotide metabolism and nucleoside transport in human erythrocytes under ATP depletion conditions.
    Plagemann PG; Wohlhueter RM; Kraupp M
    Biochim Biophys Acta; 1985 Jul; 817(1):51-60. PubMed ID: 3873962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of nucleoside uptake by the basolateral side of the sheep choroid plexus epithelium perfused in situ.
    Markovic I; Segal M; Djuricic B; Redzic Z
    Exp Physiol; 2008 Mar; 93(3):325-33. PubMed ID: 18039975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of adenosine triphosphate catabolism induced by deoxyadenosine and by nucleoside analogues in adenosine deaminase-inhibited human erythrocytes.
    Bontemps F; Van den Berghe G
    Cancer Res; 1989 Sep; 49(18):4983-9. PubMed ID: 2788493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte nucleoside and sugar transport. Endo-beta-galactosidase and endoglycosidase-F digestion of partially purified human and pig transporter proteins.
    Kwong FY; Baldwin SA; Scudder PR; Jarvis SM; Choy MY; Young JD
    Biochem J; 1986 Dec; 240(2):349-56. PubMed ID: 3101670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on adenine and adenosine metabolism by intact human erythrocytes using high performance liquid chromatography.
    Dean BM; Perrett D
    Biochim Biophys Acta; 1976 Jun; 437(1):1-5. PubMed ID: 949498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.