These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39020937)

  • 1. Short-time expansion of one-dimensional Fokker-Planck equations with heterogeneous diffusion.
    Dupont T; Giordano S; Cleri F; Blossey R
    Phys Rev E; 2024 Jun; 109(6-1):064106. PubMed ID: 39020937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.
    Kaniadakis G; Hristopulos DT
    Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate Markov processes for stochastic systems with delays: application to the stochastic Gompertz model with delay.
    Frank TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011914. PubMed ID: 12241391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fokker-Planck representations of non-Markov Langevin equations: application to delayed systems.
    Giuggioli L; Neu Z
    Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180131. PubMed ID: 31329064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution of Fokker-Planck equation for a broad class of drift and diffusion coefficients.
    Fa KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012102. PubMed ID: 21867236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physically consistent numerical solver for time-dependent Fokker-Planck equations.
    Holubec V; Kroy K; Steffenoni S
    Phys Rev E; 2019 Mar; 99(3-1):032117. PubMed ID: 30999402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solutions of a class of non-Markovian Fokker-Planck equations.
    Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041101. PubMed ID: 12443171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation.
    Maoutsa D; Reich S; Opper M
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems.
    Frank TD; Beek PJ; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
    Grima R; Thomas P; Straube AV
    J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxation of the distribution function tails for systems described by Fokker-Planck equations.
    Chavanis PH; Lemou M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061106. PubMed ID: 16485930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weiss mean-field approximation for multicomponent stochastic spatially extended systems.
    Kurushina SE; Maximov VV; Romanovskii YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022135. PubMed ID: 25215716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear inhomogeneous Fokker-Planck equations: Entropy and free-energy time evolution.
    Sicuro G; Rapčan P; Tsallis C
    Phys Rev E; 2016 Dec; 94(6-1):062117. PubMed ID: 28085323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consequences of the H theorem from nonlinear Fokker-Planck equations.
    Schwämmle V; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kantorovich-Rubinstein distance and approximation for non-local Fokker-Planck equations.
    Zhang A; Duan J
    Chaos; 2021 Nov; 31(11):111104. PubMed ID: 34881587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invariance principle and model reduction for the Fokker-Planck equation.
    Karlin IV
    Philos Trans A Math Phys Eng Sci; 2016 Nov; 374(2080):. PubMed ID: 27698039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infinite product expansion of the Fokker-Planck equation with steady-state solution.
    Martin RJ; Craster RV; Kearney MJ
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150084. PubMed ID: 26346100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data driven adaptive Gaussian mixture model for solving Fokker-Planck equation.
    Sun W; Feng J; Su J; Liang Y
    Chaos; 2022 Mar; 32(3):033131. PubMed ID: 35364842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the interpretation of stochastic calculus in systems with cross-correlated Gaussian white noises.
    Méndez V; Denisov SI; Campos D; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012116. PubMed ID: 25122260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.