These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39020986)

  • 1. Non-Debye to Debye spectral shift in solid solutions of orientationally disordered crystals.
    Singh AK
    Phys Rev E; 2024 Jun; 109(6-2):065003. PubMed ID: 39020986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diluent effects on the Debye-type dielectric relaxation in viscous monohydroxy alcohols.
    Wang LM; Shahriari S; Richert R
    J Phys Chem B; 2005 Dec; 109(49):23255-62. PubMed ID: 16375290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Debye process and dielectric state of an alcohol in a nonpolar solvent.
    Power G; Nagaraj M; Vij JK; Johari GP
    J Chem Phys; 2011 Jan; 134(4):044525. PubMed ID: 21280766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relations between the Structural α-Relaxation and the Johari-Goldstein β-Relaxation in Two Monohydroxyl Alcohols: 1-Propanol and 5-Methyl-2-hexanol.
    Ngai KL; Wang LM
    J Phys Chem B; 2019 Jan; 123(3):714-719. PubMed ID: 30601008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical and structural properties of monohydroxy alcohols exhibiting a Debye process.
    Wieth P; Vogel M
    J Chem Phys; 2014 Apr; 140(14):144507. PubMed ID: 24735305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientational relaxations in solid (1,1,2,2)tetrachloroethane.
    Tripathi P; Mitsari E; Romanini M; Serra P; Tamarit JL; Zuriaga M; Macovez R
    J Chem Phys; 2016 Apr; 144(16):164505. PubMed ID: 27131555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Existence of an orientational electric dipolar response in c60 single crystals.
    Alers GB; Golding B; Kortan AR; Haddon RC; Theil FA
    Science; 1992 Jul; 257(5069):511-4. PubMed ID: 17778682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deviations from a simple Debye relaxation in aqueous solutions of differently flexible polyions induced by polymer concentration.
    Cametti C; Sennato S; Truzzolillo D
    J Chem Phys; 2009 Jul; 131(3):034901. PubMed ID: 19624227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared probing of equilibrium and dynamics of metal-selenocyanate ion pairs in N,N-dimethylformamide solutions.
    Son H; Jin H; Choi SR; Jung HW; Park S
    J Phys Chem B; 2012 Aug; 116(30):9152-9. PubMed ID: 22746977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric and calorimetric study of orientationally disordered phases in two unusual two-component systems.
    Singh LP; Murthy SS
    J Phys Chem B; 2008 Mar; 112(9):2606-15. PubMed ID: 18254620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Communication: Linking the dielectric Debye process in mono-alcohols to density fluctuations.
    Hecksher T
    J Chem Phys; 2016 Apr; 144(16):161103. PubMed ID: 27131521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting ion-specific dielectric spectra of sodium-halide solutions into solvation water and ionic contributions.
    Rinne KF; Gekle S; Netz RR
    J Chem Phys; 2014 Dec; 141(21):214502. PubMed ID: 25481147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Debye process in Ibuprofen glass-forming liquid: insights from molecular dynamics simulation.
    Affouard F; Correia NT
    J Phys Chem B; 2010 Sep; 114(35):11397-402. PubMed ID: 20707377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disentangling the secondary relaxations in the orientationally disordered mixed crystals: cycloheptanol + cyclooctanol two-component system.
    Martínez-García JC; Tamarit JL; Pardo LC; Barrio M; Rzoska SJ; Droz-Rzoska A
    J Phys Chem B; 2010 May; 114(18):6099-106. PubMed ID: 20405877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of glass-forming liquids. XVII. Dielectric relaxation and intermolecular association in a series of isomeric octyl alcohols.
    Singh LP; Alba-Simionesco C; Richert R
    J Chem Phys; 2013 Oct; 139(14):144503. PubMed ID: 24116631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of excess Gibbs energy of electrolyte solutions: a new model for aqueous solutions.
    Dougherty RC; Howard LN
    Biophys Chem; 2003 Sep; 105(2-3):269-78. PubMed ID: 14499899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring order in disordered systems and disorder in ordered systems: Random matrix theory for isotropic and nematic liquid crystals and its perspective on pseudo-nematic domains.
    Zhao Y; Stratt RM
    J Chem Phys; 2018 May; 148(20):204501. PubMed ID: 29865812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin of the Debye relaxation in liquid water and fitting the high frequency excess response.
    Elton DC
    Phys Chem Chem Phys; 2017 Jul; 19(28):18739-18749. PubMed ID: 28696459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach.
    Zamar RC; Mensio O
    J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Debye-type dielectric relaxation in glass-forming 3-methylthio-1-hexanol.
    Gao Y; Bi D; Li X; Liu R; Tian Y; Wang LM
    J Chem Phys; 2013 Jul; 139(2):024503. PubMed ID: 23862949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.