These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39020987)
1. Diffusion of noiseless active particles in a planar convection array. Yin Q; Liu J; Li Y; Marchesoni F Phys Rev E; 2024 Jun; 109(6-1):064211. PubMed ID: 39020987 [TBL] [Abstract][Full Text] [Related]
2. Active particle diffusion in convection roll arrays. Ghosh PK; Marchesoni F; Li Y; Nori F Phys Chem Chem Phys; 2021 May; 23(20):11944-11953. PubMed ID: 33999060 [TBL] [Abstract][Full Text] [Related]
3. Diffusion of active particles in convective flows. Ghosh PK; Debnath D; Li Y; Marchesoni F Soft Matter; 2021 Mar; 17(8):2256-2264. PubMed ID: 33470249 [TBL] [Abstract][Full Text] [Related]
5. Directed Autonomous Motion and Chiral Separation of Self-Propelled Janus Particles in Convection Roll Arrays. Bag P; Nayak S; Debnath T; Ghosh PK J Phys Chem Lett; 2022 Dec; 13(49):11413-11418. PubMed ID: 36459443 [TBL] [Abstract][Full Text] [Related]
6. Active Brownian particles moving in a random Lorentz gas. Zeitz M; Wolff K; Stark H Eur Phys J E Soft Matter; 2017 Feb; 40(2):23. PubMed ID: 28236113 [TBL] [Abstract][Full Text] [Related]
7. Two-dimensional dynamics of a trapped active Brownian particle in a shear flow. Li Y; Marchesoni F; Debnath T; Ghosh PK Phys Rev E; 2017 Dec; 96(6-1):062138. PubMed ID: 29347392 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of colloidal particles in electrohydrodynamic convection of nematic liquid crystal. Takahashi K; Kimura Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012502. PubMed ID: 25122319 [TBL] [Abstract][Full Text] [Related]
9. Particle-wall alignment interaction and active Brownian diffusion through narrow channels. Bag P; Nayak S; Ghosh PK Soft Matter; 2024 Oct; 20(41):8267-8277. PubMed ID: 39382612 [TBL] [Abstract][Full Text] [Related]
10. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments. Sprenger AR; Fernandez-Rodriguez MA; Alvarez L; Isa L; Wittkowski R; Löwen H Langmuir; 2020 Jun; 36(25):7066-7073. PubMed ID: 31975603 [TBL] [Abstract][Full Text] [Related]
11. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia. Nguyen GHP; Wittmann R; Löwen H J Phys Condens Matter; 2021 Nov; 34(3):. PubMed ID: 34598179 [TBL] [Abstract][Full Text] [Related]
12. Binary Mixtures in Linear Convection Arrays. Ghosh PK; Zhou Y; Li Y; Marchesoni F; Nori F Chemphyschem; 2023 Jan; 24(1):e202200471. PubMed ID: 36125421 [TBL] [Abstract][Full Text] [Related]
13. Inertial active ratchet: Simulation versus theory. Muhsin M; Sahoo M Phys Rev E; 2023 May; 107(5-1):054601. PubMed ID: 37329079 [TBL] [Abstract][Full Text] [Related]
14. Colloidal clustering and diffusion in a convection cell array. Li Y; Zhou Y; Marchesoni F; Ghosh PK Soft Matter; 2022 Jun; 18(25):4778-4785. PubMed ID: 35703429 [TBL] [Abstract][Full Text] [Related]
15. Active Brownian and inertial particles in disordered environments: Short-time expansion of the mean-square displacement. Breoni D; Schmiedeberg M; Löwen H Phys Rev E; 2020 Dec; 102(6-1):062604. PubMed ID: 33465967 [TBL] [Abstract][Full Text] [Related]
16. Diversity of self-propulsion speeds reduces motility-induced clustering in confined active matter. de Castro P; M Rocha F; Diles S; Soto R; Sollich P Soft Matter; 2021 Nov; 17(43):9926-9936. PubMed ID: 34676388 [TBL] [Abstract][Full Text] [Related]