These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 39021010)
1. Excited-state quantum phase transitions and the entropy of the work distribution in the anharmonic Lipkin-Meshkov-Glick model. Zhang H; Qian Y; Niu ZX; Wang Q Phys Rev E; 2024 Jun; 109(6-1):064110. PubMed ID: 39021010 [TBL] [Abstract][Full Text] [Related]
2. Signatures of excited-state quantum phase transitions in quantum many-body systems: Phase space analysis. Wang Q; Pérez-Bernal F Phys Rev E; 2021 Sep; 104(3-1):034119. PubMed ID: 34654165 [TBL] [Abstract][Full Text] [Related]
3. Characterizing the Lipkin-Meshkov-Glick model excited-state quantum phase transition using dynamical and statistical properties of the diagonal entropy. Wang Q; Pérez-Bernal F Phys Rev E; 2021 Mar; 103(3-1):032109. PubMed ID: 33862777 [TBL] [Abstract][Full Text] [Related]
6. Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures. Bao J; Liu YH; Guo B J Phys Condens Matter; 2021 Sep; 33(49):. PubMed ID: 34517354 [TBL] [Abstract][Full Text] [Related]
7. Dynamical quantum phase transitions in the dissipative Lipkin-Meshkov-Glick model with proposed realization in optical cavity QED. Morrison S; Parkins AS Phys Rev Lett; 2008 Feb; 100(4):040403. PubMed ID: 18352244 [TBL] [Abstract][Full Text] [Related]
8. Analogies of the classical Euler top with a rotor to spin squeezing and quantum phase transitions in a generalized Lipkin-Meshkov-Glick model. Opatrný T; Richterek L; Opatrný M Sci Rep; 2018 Jan; 8(1):1984. PubMed ID: 29386576 [TBL] [Abstract][Full Text] [Related]
9. Work statistics and symmetry breaking in an excited-state quantum phase transition. Mzaouali Z; Puebla R; Goold J; El Baz M; Campbell S Phys Rev E; 2021 Mar; 103(3-1):032145. PubMed ID: 33862795 [TBL] [Abstract][Full Text] [Related]
10. ac-Driven quantum phase transition in the Lipkin-Meshkov-Glick model. Engelhardt G; Bastidas VM; Emary C; Brandes T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052110. PubMed ID: 23767490 [TBL] [Abstract][Full Text] [Related]
11. Nonadiabatic dynamics of the excited states for the Lipkin-Meshkov-Glick model. Kopylov W; Schaller G; Brandes T Phys Rev E; 2017 Jul; 96(1-1):012153. PubMed ID: 29347272 [TBL] [Abstract][Full Text] [Related]
12. Irreversible processes without energy dissipation in an isolated Lipkin-Meshkov-Glick model. Puebla R; Relaño A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012101. PubMed ID: 26274119 [TBL] [Abstract][Full Text] [Related]
13. Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics. Zhou Y; Wang JW; Cao LZ; Wang GH; Shi ZY; Lü DY; Huang HB; Hu CS Rep Prog Phys; 2024 Sep; 87(10):. PubMed ID: 39260394 [TBL] [Abstract][Full Text] [Related]
14. Avoided crossings and dynamical tunneling close to excited-state quantum phase transitions. Nader DJ; González-Rodríguez CA; Lerma-Hernández S Phys Rev E; 2021 Dec; 104(6-1):064116. PubMed ID: 35030927 [TBL] [Abstract][Full Text] [Related]
15. Semiclassical bifurcations and topological phase transitions in a one-dimensional lattice of coupled Lipkin-Meshkov-Glick models. Sorokin AV; Aparicio Alcalde M; Bastidas VM; Engelhardt G; Angelakis DG; Brandes T Phys Rev E; 2016 Sep; 94(3-1):032123. PubMed ID: 27739785 [TBL] [Abstract][Full Text] [Related]
16. Identifying the order of a quantum phase transition by means of Wehrl entropy in phase space. Castaños O; Calixto M; Pérez-Bernal F; Romera E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052106. PubMed ID: 26651646 [TBL] [Abstract][Full Text] [Related]
17. Complexity in the Lipkin-Meshkov-Glick model. Pal K; Pal K; Sarkar T Phys Rev E; 2023 Apr; 107(4-1):044130. PubMed ID: 37198862 [TBL] [Abstract][Full Text] [Related]
18. Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model. Orús R; Dusuel S; Vidal J Phys Rev Lett; 2008 Jul; 101(2):025701. PubMed ID: 18764198 [TBL] [Abstract][Full Text] [Related]
19. Reduced fidelity susceptibility and its finite-size scaling behaviors in the Lipkin-Meshkov-Glick model. Ma J; Xu L; Xiong HN; Wang X Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051126. PubMed ID: 19113114 [TBL] [Abstract][Full Text] [Related]
20. Quantum phase transitions in networks of Lipkin-Meshkov-Glick models. Sorokin AV; Bastidas VM; Brandes T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042141. PubMed ID: 25375472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]